LeetCode0012-整数转罗马数字
题目:
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
- I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
- X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
- C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个整数,将其转为罗马数字。输入确保在 1 到 3999 的范围内。
示例 1:
输入: 3
输出: "III"
示例 2:
输入: 4
输出: "IV"
示例 3:
输入: 9
输出: "IX"
示例 4:
输入: 58
输出: "LVIII"
解释: L = 50, V = 5, III = 3.
示例 5:
输入: 1994
输出: "MCMXCIV"
解释: M = 1000, CM = 900, XC = 90, IV = 4.
分析:
将给定的整数转换为罗马数字需要找到13个符号的序列,这些符号的对应值加起来就是整数。根据符号值,此序列必须按从大到小的顺序排列。符号值如下:
{
M
−
1000
C
M
−
900
D
→
500
C
D
→
400
C
→
100
X
C
→
90
L
→
50
X
L
⟶
40
X
→
10
I
X
⟶
9
V
→
5
I
V
⟶
4
I
⟶
1
\left\{\begin{array}{ll} \mathbf{M}-1000 & \mathrm{CM}-900 \\ \mathrm{D} \rightarrow 500 & \mathrm{CD} \rightarrow 400 \\ \mathrm{C} \rightarrow 100 & \mathrm{XC} \rightarrow 90 \\ \mathrm{L} \rightarrow 50 & \mathrm{XL} \longrightarrow 40 \\ \mathrm{X} \rightarrow 10 & \mathrm{IX} \longrightarrow 9 \\ \mathrm{V} \rightarrow 5 & \mathrm{IV} \longrightarrow 4 \\ \mathrm{I} \longrightarrow 1 & \end{array}\right.
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧M−1000D→500C→100L→50X→10V→5I⟶1CM−900CD→400XC→90XL⟶40IX⟶9IV⟶4
表示应该使用尽可能大的符号,从左侧开始工作。因此,使用贪心算法是有意义的。贪心算法是一种在当前时间做出最佳可能决策的算法,在这种情况下,它会取出最大可能的符号。
为了表示一个给定的整数,寻找合适它的最大符号。我们减去它,然后寻找适合余数 最大符号,依次类推,直到余数为0,取出的每个符号都附加到输出的罗马数字字符串上。
代码:
/**
* 0012 整数转罗马数字
* 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
* <p>
* 字符 数值
* I 1
* V 5
* X 10
* L 50
* C 100
* D 500
* M 1000
* <p>
* 例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
* <p>
* 通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。
* 数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。
* 同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
* <p>
* I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
* X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
* C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
* <p>
* 给定一个整数,将其转为罗马数字。输入确保在 1 到 3999 的范围内。
* <p>
* 示例 1:
* <p>
* 输入: 3
* 输出: "III"
* <p>
* 示例 2:
* <p>
* 输入: 4
* 输出: "IV"
* <p>
* 示例 3:
* <p>
* 输入: 9
* 输出: "IX"
* <p>
* 示例 4:
* <p>
* 输入: 58
* 输出: "LVIII"
* 解释: L = 50, V = 5, III = 3.
* <p>
* 示例 5:
* <p>
* 输入: 1994
* 输出: "MCMXCIV"
* 解释: M = 1000, CM = 900, XC = 90, IV = 4.
*/
/**
* 贪心算法
*/
class Solution {
public String intToRoman(int num) {
// 把阿拉伯数字与罗马数字可能出现的所有情况和对应关系,放在两个数组中
// 并且按照阿拉伯数字的大小降序排列,这是贪心选择思想
int[] nums = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1};
String[] romans = {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"};
// 构建结果集字符串
StringBuilder stringBuilder = new StringBuilder();
// 索引,遍历13种组合值
int index = 0;
while (index < 13) {
// 特别注意:这里是等号
// while (num >= nums[index]) { // 这里使用循环,是同一种组合值,可能出现多次
// // 注意:这里是等于号,表示尽量使用大的"面值"
// // 找到符合要求的组合值,将其添加进字符串,并让源数字减少对应的值
// stringBuilder.append(romans[index]);
// num -= nums[index];
// }
/***
* 与注释二选一即可,通过俩种不同的思路去考虑,注释为通过多次匹配同一个符号值
* 下面的是通过直接取余,一次考虑,能匹配当前符号值的次数
*/
// 当前符号值能匹配的最大次数
int n = num / nums[index];
if (n > 0) {
for (int i = 0; i < n; i++) {
stringBuilder.append(romans[index]);
}
}
// 去除当前符号值的多次匹配结果
num %= nums[index];
index++;
}
return stringBuilder.toString();
}
}
/**
* 测试类
*/
public class Study0012 {
public static void main(String[] args) {
System.out.println(new Solution().intToRoman(1994));
}
}