LeetCode0099-恢复二叉搜索树

这篇博客详细介绍了LeetCode第0099题——恢复二叉搜索树的解题思路。通过分析二叉搜索树的中序遍历特性,提出了一种O(n)空间复杂度的解决方案。文章首先阐述了错误交换节点对二叉搜索树的影响,然后提出了寻找不满足递增顺序的节点位置的方法,最后展示了如何通过遍历原树修复交换错误。
摘要由CSDN通过智能技术生成

LeetCode0099-恢复二叉搜索树

题目:

给你二叉搜索树的根节点 root ,该树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。

进阶:使用 O(n) 空间复杂度的解法很容易实现。你能想出一个只使用常数空间的解决方案吗?

示例 1:

在这里插入图片描述

输入:root = [1,3,null,null,2]
输出:[3,1,null,null,2]
解释:3 不能是 1 左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。
示例 2:

在这里插入图片描述

输入:root = [3,1,4,null,null,2]
输出:[2,1,4,null,null,3]
解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。
提示:
树上节点的数目在范围 [2, 1000] 内
-2^31 <= Node.val <= 2 ^31 - 1

分析:

方法一:显示中序遍历

需要考虑俩个节点被错误地交换后对原二叉搜索树造成什么影响。对于二叉搜索树,如果对其进行中序遍历,得到的值序列是递增有序的,如果错误的交换了俩个点,等价于在这个值序列中交换了俩个值,破坏了值序列的递增性。

如果在一个递增的序列中交换两个值会造成什么影响。假设有一个递增序列 a=[1,2,3,4,5,6,7]]。如果我们交换两个不相邻的数字,例如 2 和 6,原序列变成了 a=[1,6,3,4,5,2,7]那么显然序列中有两个位置不满ai<ai+1,在这个序列中体现为6>3,5>2,因此只要找到这俩个位置,即可找到被错误交换的俩个节点。如果我们交换俩个相邻的数字,例如2,3,此时交换后的序列只有一个位置不满足ai<ai+1.因此整个值序列汇总不满足条件的位置或者有俩个或者有一个。

所以方法为:

  • 找到二叉树中序遍历得到的值序列的不满足条件的位置。
  • 如果有俩个,记为i和j(i < j 且 ai > ai+1 && aj > aj+1)那么对应被错误交换的节点为ai 对应的节点和aj+1对应的节点,分别记为x,y。
  • 如果有一个,记为i,那么对应被错误交换的节点即为ai对应的节点和aj对应的节点,分别记为x,y。
  • 交换x,y俩个节点即可。

实现部分,本方法开辟一个新列表nums来记录中序遍历得到的值序列,然后线性遍历找到俩个位置i,j 并重新遍历原二叉树修改对应节点的值完成修复。

代码:

/**
 * 0099-恢复二叉搜索树
 * 给你二叉搜索树的根节点 root ,该树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。
 * <p>
 * 进阶:使用 O(n) 空间复杂度的解法很容易实现。你能想出一个只使用常数空间的解决方案吗?
 * <p>
 * 示例 1:
 * <p>
 * 输入:root = [1,3,null,null,2]
 * 输出:[3,1,null,null,2]
 * 解释:3 不能是 1 左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。
 * <p>
 * 示例 2:
 * <p>
 * 输入:root = [3,1,4,null,null,2]
 * 输出:[2,1,4,null,null,3]
 * 解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。
 * <p>
 * 提示:
 * <p>
 * 树上节点的数目在范围 [2, 1000] 内
 * -2^31 <= Node.val <= 2^31 - 1
 */

import java.util.ArrayList;
import java.util.List;

/**
 * Definition for a binary tree node.
 *
 */
class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;

    TreeNode() {

    }

    TreeNode(int val) {
        this.val = val;
    }

    TreeNode(int val, TreeNode left, TreeNode right) {
        this.val = val;
        this.left = left;
        this.right = right;
    }
}

/**
 * 显示中序遍历
 */
class Solution {
    public void recoverTree(TreeNode root) {
        List<Integer> nums = new ArrayList<>();
        inorder(root, nums);
        int[] swapped = findTwoSwapped(nums);
        recover(root, 2, swapped[0], swapped[1]);
    }

    /**
     * 二叉树中序遍历
     * @param root  树根节点
     * @param nums  开辟一个列表,用来记录中序遍历得到值序列
     */
    private void inorder(TreeNode root, List<Integer> nums) {
        if (root == null) {
            return;
        }
        inorder(root.left, nums);
        nums.add(root.val);
        inorder(root.right, nums);
    }

    /**
     * 寻找需要交换的俩个数值
     * @param nums
     * @return
     */
    public int[] findTwoSwapped(List<Integer> nums) {
        // 获取中序序列的长度
        int n = nums.size();
        // 初始化x,y
        int x = -1, y = -1;
        for (int i = 0; i < n - 1; i++) {
            // 找到第一个
            if (nums.get(i + 1) < nums.get(i)) {
                y = nums.get(i + 1);
                if (x == -1) {
                    x = nums.get(i);
                } else {
                    break;
                }
            }
        }
        return new int[]{x, y};
    }

    /**
     *
     * @param root 根节点
     * @param count 需要交换的个数
     * @param x 第一个不满足条件的数
     * @param y 第二个不满足条件的数
     */
    public void recover(TreeNode root, int count, int x, int y) {
        if (root != null) {
            if (root.val == x || root.val == y) {
                root.val = root.val == x ? y : x;
                if (--count == 0) {
                    return;
                }
            }
            recover(root.right, count, x, y);
            recover(root.left, count, x, y);
        }
    }
}

public class Study0099 {
    public static void main(String[] args) {
        // 构建测试用例
        TreeNode tree = new TreeNode(1, new TreeNode(3, null, new TreeNode(2, null, null)), null);
        // 调用恢复函数
        new Solution().recoverTree(tree);
        // 输出打印结果--先序遍历结果
        System.out.println("恢复的二叉树先序遍历结果为:");
        new Study0099().preorder(tree);
    }

    /**
     * 二叉树先序遍历
     * @param root
     */
    private void preorder(TreeNode root) {
        if (root == null) {
            return;
        }
        System.out.print(root.val+"\t");
        preorder(root.left);
        preorder(root.right);
    }
}

结果:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值