LeetCode0099-恢复二叉搜索树
题目:
给你二叉搜索树的根节点 root ,该树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。
进阶:使用 O(n) 空间复杂度的解法很容易实现。你能想出一个只使用常数空间的解决方案吗?
示例 1:
输入:root = [1,3,null,null,2]
输出:[3,1,null,null,2]
解释:3 不能是 1 左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。
示例 2:
输入:root = [3,1,4,null,null,2]
输出:[2,1,4,null,null,3]
解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。
提示:
树上节点的数目在范围 [2, 1000] 内
-2^31 <= Node.val <= 2 ^31 - 1
分析:
方法一:显示中序遍历
需要考虑俩个节点被错误地交换后对原二叉搜索树造成什么影响。对于二叉搜索树,如果对其进行中序遍历,得到的值序列是递增有序的,如果错误的交换了俩个点,等价于在这个值序列中交换了俩个值,破坏了值序列的递增性。
如果在一个递增的序列中交换两个值会造成什么影响。假设有一个递增序列 a=[1,2,3,4,5,6,7]]。如果我们交换两个不相邻的数字,例如 2 和 6,原序列变成了 a=[1,6,3,4,5,2,7]那么显然序列中有两个位置不满ai<ai+1,在这个序列中体现为6>3,5>2,因此只要找到这俩个位置,即可找到被错误交换的俩个节点。如果我们交换俩个相邻的数字,例如2,3,此时交换后的序列只有一个位置不满足ai<ai+1.因此整个值序列汇总不满足条件的位置或者有俩个或者有一个。
所以方法为:
- 找到二叉树中序遍历得到的值序列的不满足条件的位置。
- 如果有俩个,记为i和j(i < j 且 ai > ai+1 && aj > aj+1)那么对应被错误交换的节点为ai 对应的节点和aj+1对应的节点,分别记为x,y。
- 如果有一个,记为i,那么对应被错误交换的节点即为ai对应的节点和aj对应的节点,分别记为x,y。
- 交换x,y俩个节点即可。
实现部分,本方法开辟一个新列表nums来记录中序遍历得到的值序列,然后线性遍历找到俩个位置i,j 并重新遍历原二叉树修改对应节点的值完成修复。
代码:
/**
* 0099-恢复二叉搜索树
* 给你二叉搜索树的根节点 root ,该树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。
* <p>
* 进阶:使用 O(n) 空间复杂度的解法很容易实现。你能想出一个只使用常数空间的解决方案吗?
* <p>
* 示例 1:
* <p>
* 输入:root = [1,3,null,null,2]
* 输出:[3,1,null,null,2]
* 解释:3 不能是 1 左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。
* <p>
* 示例 2:
* <p>
* 输入:root = [3,1,4,null,null,2]
* 输出:[2,1,4,null,null,3]
* 解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。
* <p>
* 提示:
* <p>
* 树上节点的数目在范围 [2, 1000] 内
* -2^31 <= Node.val <= 2^31 - 1
*/
import java.util.ArrayList;
import java.util.List;
/**
* Definition for a binary tree node.
*
*/
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {
}
TreeNode(int val) {
this.val = val;
}
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
/**
* 显示中序遍历
*/
class Solution {
public void recoverTree(TreeNode root) {
List<Integer> nums = new ArrayList<>();
inorder(root, nums);
int[] swapped = findTwoSwapped(nums);
recover(root, 2, swapped[0], swapped[1]);
}
/**
* 二叉树中序遍历
* @param root 树根节点
* @param nums 开辟一个列表,用来记录中序遍历得到值序列
*/
private void inorder(TreeNode root, List<Integer> nums) {
if (root == null) {
return;
}
inorder(root.left, nums);
nums.add(root.val);
inorder(root.right, nums);
}
/**
* 寻找需要交换的俩个数值
* @param nums
* @return
*/
public int[] findTwoSwapped(List<Integer> nums) {
// 获取中序序列的长度
int n = nums.size();
// 初始化x,y
int x = -1, y = -1;
for (int i = 0; i < n - 1; i++) {
// 找到第一个
if (nums.get(i + 1) < nums.get(i)) {
y = nums.get(i + 1);
if (x == -1) {
x = nums.get(i);
} else {
break;
}
}
}
return new int[]{x, y};
}
/**
*
* @param root 根节点
* @param count 需要交换的个数
* @param x 第一个不满足条件的数
* @param y 第二个不满足条件的数
*/
public void recover(TreeNode root, int count, int x, int y) {
if (root != null) {
if (root.val == x || root.val == y) {
root.val = root.val == x ? y : x;
if (--count == 0) {
return;
}
}
recover(root.right, count, x, y);
recover(root.left, count, x, y);
}
}
}
public class Study0099 {
public static void main(String[] args) {
// 构建测试用例
TreeNode tree = new TreeNode(1, new TreeNode(3, null, new TreeNode(2, null, null)), null);
// 调用恢复函数
new Solution().recoverTree(tree);
// 输出打印结果--先序遍历结果
System.out.println("恢复的二叉树先序遍历结果为:");
new Study0099().preorder(tree);
}
/**
* 二叉树先序遍历
* @param root
*/
private void preorder(TreeNode root) {
if (root == null) {
return;
}
System.out.print(root.val+"\t");
preorder(root.left);
preorder(root.right);
}
}