ext ratio

Ext.form.Radio的横向和纵向排列
2007-11-29 10:33

横向:整个Radio Group使用column方式进行布局即可横向显示,但这样的话只能显示每一个Radio的BoxLabel,不能为Radio Group指定一个总的Label,所以第一个Radio再使用form布局进行嵌套,用它的fieldLabel作为Radio Group的Label.

纵向:使用Form进行布局即可,但除了第一项之外的所有项需要把labelSeparator指定为空,以免出现多余的冒号。

效果图

配置代码

new Ext.FormPanel({
labelAlign: 'right',
frame:true,
title: 'Radio Group',
bodyStyle:'padding:5px 5px 0',
width: 400,
items: [
{
layout:'column',
items:[
{
layout: 'form',
items: [new Ext.form.Radio({fieldLabel: '横向Radio Group',boxLabel:'opt1', name:'opt1'})]
},
{items: [new Ext.form.Radio({boxLabel:'opt2', name:'opt1'})]},
{items: [new Ext.form.Radio({boxLabel:'opt3', name:'opt1'})]},
{items: [new Ext.form.Radio({boxLabel:'opt3', name:'opt1'})]}
]
},
{
layout: 'form',
items: [
new Ext.form.Radio({fieldLabel: '纵向Radio Group',boxLabel:'opt1', name:'opt2'}),
new Ext.form.Radio({boxLabel:'opt2',labelSeparator:'', name:'opt2'}),
new Ext.form.Radio({boxLabel:'opt3',labelSeparator:'', name:'opt2'}),
new Ext.form.Radio({boxLabel:'opt3',labelSeparator:'', name:'opt2'})
]
}
]
});
以下是将jaffe数据集按照7:1:2的比例划分为训练集、验证集和测试集的Python代码: ```python import os import shutil import random # jaffe数据集所在的目录 data_dir = '/path/to/jaffe' # 划分后数据集保存的目录 output_dir = '/path/to/output' # 按照7:1:2的比例划分为训练集、验证集和测试集 train_ratio = 0.7 val_ratio = 0.1 test_ratio = 0.2 # 图片文件的后缀名 exts = ['.tiff'] # 将jaffe数据集按照类别划分为子目录 classes = ['AN', 'DI', 'FE', 'HA', 'NE', 'SA', 'SU'] for cls in classes: os.makedirs(os.path.join(output_dir, 'train', cls)) os.makedirs(os.path.join(output_dir, 'val', cls)) os.makedirs(os.path.join(output_dir, 'test', cls)) # 遍历jaffe数据集目录下的所有图片文件,将其随机划分为训练集、验证集和测试集 for ext in exts: files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(ext)] random.shuffle(files) num_train = int(train_ratio * len(files)) num_val = int(val_ratio * len(files)) num_test = len(files) - num_train - num_val # 将训练集图片复制到对应的子目录 for i in range(num_train): cls = os.path.basename(files[i])[3:5] shutil.copy(files[i], os.path.join(output_dir, 'train', cls)) # 将验证集图片复制到对应的子目录 for i in range(num_train, num_train+num_val): cls = os.path.basename(files[i])[3:5] shutil.copy(files[i], os.path.join(output_dir, 'val', cls)) # 将测试集图片复制到对应的子目录 for i in range(num_train+num_val, len(files)): cls = os.path.basename(files[i])[3:5] shutil.copy(files[i], os.path.join(output_dir, 'test', cls)) ``` 您可以根据需要修改代码中的数据集路径、划分比例和保存路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值