【文献全文阅读】微生物单碳与氮代谢有利于水库蓝藻水华后的生态恢复

微生物单碳与氮代谢有利于水库蓝藻水华后的生态恢复

微信公众号:爱学R语言的小璇

摘要

蓝藻水华对内陆水域浮游生物群落的结构和功能有深远的影响,但很少有研究关注水华过后微生物单碳代谢和氮循环过程对水质改善的影响。在此,我们比较了细菌群落的结构和功能,重点研究亚热带饮用水水库蓝藻微囊藻水华爆发和恢复期的微生物单碳代谢和氮代谢。我们的数据显示,微生物的单碳代谢和氮循环与水华的不同时期密切相关,微生物单碳循环和氮循环的功能基因的变化与Methylomonas sp.的变化趋势一致。我们的研究结果表明:微生物的单碳带血和氮代谢对蓝藻水华爆发后的水质恢复是有益的。该研究为深入研究内陆淡水微生物介导的单碳循环和氮循环对蓝藻爆发后水库水质恢复作用奠定了基础。

关键词

蓝藻水华,甲烷氧化菌,单碳循环,氮循环,亚热带水库

引言

蓝藻藻华可导致水体浊度上升,溶解氧下降,从而导致浮游动物、鱼类和底栖无脊椎动物的死亡(Bartram and Chorus, 1999; Skafi et al., 2021)。蓝藻藻华产生的臭味会破坏内陆水域的休闲功能和饮用水的安全使用(Juttner and Watson, 2007b; Paerl and Otten, 2013)。此外,各种蓝藻毒素可以通过捕食性食物链进入人体,引起肝脏和消化系统紊乱,从而影响人类健康(Juttner and Watson, 2007b; Paerl and Otten, 2013)。蓝藻藻华引起的环境波动可以改变真核浮游生物的生存模式(Liu et al., 2019a)。此外,不同浮游植物群落的演替可能会介导亚热带水库中细菌群落的时间动态演替。由于浮游细菌具有分解溶解性和不溶性有机物的独特能力,它们是元素循环不可缺少的调节器(Bunse and Pinhassi, 2017)。同时,浮游植物群落的独特演替模式可能会介导亚热带水库中细菌群落的时间动态变化(Liu et al., 2014)。
单碳循环是指大气中的二氧化碳被固定为甲烷,甲烷被氧化为甲醇,甲醇被氧化为甲醛,然后甲醛进一步被氧化为甲酸,最后甲酸在少数微生物的共同作用下被代谢为二氧化碳(Tveit et al., 2019)。与整个碳循环相比,单碳循环涉及的物质构成更简单,代谢途径更短,转化和优化的难度更小(Bar-Even et al., 2010)。有研究报道,甲基单胞菌 (Methylomonas) 是水中一类重要的益生菌,它含有甲烷氧化、甲醇氧化、甲醛氧化和反硝化等多种功能基因,可以与其他微生物耦合,驱动单碳和氮循环(Yu et al., 2017)。研究人员已经设计了一种可以使用甲醇作为唯一的碳源进行生长的大肠杆菌 (Escherichia coli)(Chen et al., 2020)。水中氮和磷的积累是蓝藻藻华的直接原因,微生物的单碳和氮代谢有利于降低水体的富营养水平(Li et al., 2020)。以往的研究表明微生物驱动的脱氮可以在一定程度上缓解淡水生态系统的富营养化有利于良好水质的保持(Xue et al., 2017; Yu et al., 2014)。在淡水生态系统中,有机碳和硝酸盐 (NO3-) 浓度被认为是调节反硝化作用和异化作用将硝酸盐 (NO3-) 还原为铵 (NH4+) 效率的最重要因素(Roland et al., 2018; Yin et al., 2002)。沉积物中有机碳也是控制异化硝酸盐还原率的主要因素(Jiang et al., 2020)。一项对淡水湖泊中甲烷营养活性、丰度和群落结构的研究表明,富营养化可能影响淡水湖泊沉积物中的甲烷氧化过程(Jiang et al., 2020)。与传统的明矾浆除藻和滤食性鱼类的环境调控手段相比,微生物调控具有生态友好和可持续的环保优势(Kaihong et al., 2002)。以往的研究大多从物种组成的角度分析蓝藻藻华对微生物群落结构的影响(Xue et al., 2022),随着宏基因组测序技术的进步,分析蓝藻藻华过程中微生物的功能已成为现实。

实验材料与方法

实验材料

溪东水库 (24°49′N,118°10′E) 是一个典型的亚热带层状淡水水库,位于中国东南部厦门。2014年10月观察到蓝藻藻华,根据浮游植物生物量、叶绿素a浓度和水体透明度推算水库在11月恢复正常(Xue et al., 2018)。总的来说,从2014年10月到12月,在6个有代表性的时间点,分别在表层 (0.5 m) 和底层 (25 m) 2个水层采集了12个水样。根据溪东水库以前的研究(Xue et al., 2018),在这项研究中,将蓝藻藻华分为三个不同的时期:10月的藻华期 (Bloom) 、11月的非藻华期I (NB I) 和12月的非藻华期II (NB II)。水样收集:每次取约500 ml 的水样通过0.22 μm的聚碳酸酯过滤器(直径47 mm,Millipore,Billerica,MA,USA)进行过滤。过滤器被保存在-80℃,直到进一步处理。水面浮游植物样品在现场用1.5% 的酸性Lugol溶液浓缩。浮游植物使用Sedgewick Rafter计数室,在200倍放大率的倒置显微镜下进行计数。此外,水样的物理和化学特征以及浮游植物数据直接来自溪东水库以前的研究(Xue et al., 2018; Yang et al., 2016)。

实验方法

DNA提取,和宏基因组测序

使用FastDNA Spin试剂盒 (MP Biomedicals, Santa Ana, CA, USA) 按照制造商的说明提取DNA(Xue et al., 2018)。在Illumina HiSeq2500平台 (Illumina Inc., San Diego, CA, USA) 上,使用标准建库流程(北京基因组学研究所,北京,中国),通过双端端测序方法进行宏基因组测序。12个测序样品共获得129,514.62 Mbp的数据量(平均每个样品10,792.89 Mbp)。下机数据处理:使用fastp (Version 0.21.0) 对原始序列进行处理以去除低质量序列,并使用fastuniq(version 1.1.0)去除被适配器污染 ( ≥ 15 bp sequence overlap with adapter sequence) 、错误 ( ≥ 10 ambiguous nucleotides) 和低质量读数 ( ≥ 38 nucleotides with quality score below 38)。经过数据过滤,共获得了129,117.47 Mbp的Clean data(平均每个样本约10 Gb的Clean data)可用于进一步分析。

使用SOAP denovo(Luo et al., 2012)软件对Clean data进行组装分析,首先选取K-mer(值59)对单个样品进行组装,从组装结果中选取N50最大的Scaffolds作为该样品最终的组装结果,组装得到的Scaffolds从N连接处打断,得到不含N的序列片段的Scaftigs (i.e., continuous sequences within scaffolds)(Nielsen et al., 2014),将各样品质控后的Clean data采用SoapAligner软件比对至各样品组装后的Scaftigs上,获取未被利用上的PE reads,进行混合组装(Qin et al., 2010),组装参数与单样品组装参数相同;过滤掉单样品和混合组装中长度小于500bp的Scaftigs(Sunagawa et al., 2015),得到Scaftigs用于后续基因预测、物种注释和功能注释。

采用MetaGeneMark进行基因预测,并将各样品和混合组装预测产生的基因放在一起进行去冗余,构建gene catalogue,然后综合各样品的Clean data和gene catalogue,获得gene catalogue在各样品中的丰度信息;将gene catalogue和MicroNR库进行比对,获得Unigenes的物种注释信息,结合基因丰度表得到不同分类层级的物种丰度表;根据gene catalogue表,进行代谢通路 (KEGG),同源基因簇 (eggNOG),碳水化合物酶 (CAZy) 的功能注释并得到相对应的基因和酶丰度预测表。为确保每个样本的功能丰度一致性,排除测序深度对后续分析的影响,用于后续分析的丰度表进行了抽平处理。所有的宏基因组序列数据都已上传到NCBI序列读数档案 (SRA) 数据库中,生物项目编号为PRJNA416667。

数据分析

本研究从所有样品中被注释的1659个细菌物种中挑选出前35个最丰富物种(相对丰度大于0.05%)。物种相对丰度热图是使用R语言中 (R Core Team, 2021) 的“Heatmap”包绘制的。物种组成的差异丰度矩阵和P值矩阵由 “DESeq2” (Love et al., 2014) R包计算获得获得。并使用Benjamini和Hochberg错误发现率 (FDR,False Discovery Rate) 来校正P值。通过“psych”R包中的corr.test函数获得所有样品中被注释的443个科水平细菌物种分类水平与18个主要环境因素之间的Spearman相关系数,从443个科中选出前30个丰富的类群,使用“Heatmap”包绘制物种与环境因子的相关性热图。使用ggplot2软件包绘制差异物种火山图(Topper et al., 2017),显著性水平为q < 0.01(校正P值),且差异倍数 (FoldChange) 的绝对值大2被认为是差异表达物种。基因数矩阵是在均值归一化后得到的 (Z score),基因相对丰度热图使用ggplot2包绘制。一个分类中的样本的Z评分是分类中样本的读数与分类中所有样本的平均读数之差除以所有样本的标准差。所有的统计分析与图形可视化都是用Rstudio (v.4.1.2) 完成的。

共发生网络分析

为降低网络的复杂性,选择相对丰度大于0.05% 的物种进行后续分析,利用R软件 (psych package) 中的corr.test函数计算每组样品中所有物种之间的Spearman相关系数,得到相关系数矩阵和P值矩阵。根据Spearman相关矩阵相关性系数r (r ≥ 0.8) 和校正后的P值矩阵 (P < 0.01) 构建相关性网络,利用igraph软件包构建并可视化菌群共存网络,并在Gephi软件中进一步美化细菌共存网络,最终得到的网络图中每个节点代表一个物种,连接节点之间的每条边代表物种之间的显著相关性(Yuan et al., 2021),通过设定权重,将正相关和负相关的边分别设定为红色和蓝色,细菌共线网络中不同的节点颜色代表不同的模块。为了更好地了解所建网络的拓扑结构,计算了基本的网络参数,包括边数、节点数、模块化、平均聚类系数、网络直径、平均路径长度、平均程度和模块数。同时为了计算细菌共现网络的网络特性并验证网络的随机性,本研究利用erdos.renyi.game函数构建了一个与真实网络具有相同的节点和边数的随机网络1000次,然后计算随机网络的拓扑特性并与真实细菌共现网络进行了对比分析(Erdos and Renyi, 1959)。此外,对于真实网络中具体的相互作用和物种组成,本研究分析了每个模块的物种在物种分类门水平的物种组成。并在https://www.ncbi.nlm.nih.gov/Taxonomy/Browser网站上分析了物种分类水平种与门之间的相应关系(Zhou et al., 2020b)。

加权相关网络分析

加权基因加权相关网络分析是基于12个样品中注释到的5816个基因的相对丰度表,使用“WGCNA”R软件包(Langfelder and Horvath, 2008; 2012)完成分析。简而言之,梯度法被用来探索相邻矩阵权重参数的值:power (值从1到30不等)。其中一个关键参数是power,它主要影响加权基因共表达网络模块内部的独立性和平均连接程度。当power为22,independence degree ≥ 0.8时,根据WGCNA包官方说明,power值可以适当地评估网络的无尺度拓扑结构(Yepes et al., 2016)。因此,在本项研究中power (value 22) 被用来构建共表达网络模块。然后,利用相关表达值构建拓扑重叠矩阵,并用于分层聚类分析。使用动态树形切割算法检测基因模块,分析结果显示无标度拓扑指数为0.8。基因模块使用动态层次树形切割算法构建,参数如下:min module size = 30,deep split = 2,corFnc = “pearson correlation”,merge cut height = 0.25,network type = “signed hybrid”。模块和环境因素之间的相关性是通过WGCNA函数包获得的。输出的模块使用参数:threshold = 0.02。共表达模块结构通过基因树状图进行可视化(Deng et al., 2019)。

实验结果

水库蓝藻暴发后的细菌群落结构

Fig. 1 Cyanobacterial bloom and fade in Xidong Reservoir from subtropical China. a Total phytoplankton biomass in surface and bottom waters. Cyanobacterial bloom and fade were divided into three phases (Cyanobacterial bloom, non-bloom period I (NB I), non-bloom period II (NB II). b Community composition of phytoplankton in the surface and bottom waters. The pie charts showing the relative biomass of the most abundant phytoplankton. c Temporal variation in the water transparency from cyanobacterial bloom to non-bloom periods – Secchi depth shown in meter.

浮游植物群落数据显示,蓝藻水华几乎完全由铜绿微囊藻(Microcystis aeruginosa)组成(占浮游植物生物量的 80%以上)(图 1)。浮游植物生物量在不同水深和时间表现出变化,而表层水的浮游植物生物量高于底层水(图 1a)。表层水和底层水的最大生物量出现在蓝藻盛行期(即第297天,表层水17.285毫克/升,底层水10.880毫克/升)。表层和底层水样中浮游植物群落的时间异质性从蓝藻盛行期到非盛行期都很明显(图 1b)。2014 年 10 月,铜绿微囊藻是主要的物种。在 363 天内,表层水样中的主要浮游植物物种是 Cryptomonas ovata

Fig. S1 Co-occurrence network and relationships between bacterial community and environmental factors. a The co-occurrence patterns among bacterial species revealed by network analysis. The nodes were colored according to different types of modularity classes. A connection stands for a strong (Spearman’s r > 0.8 or r < −0.8) and significant (P-value < 0.01) correlation. The size of each node is proportional to connectivity degree. Major modules have more than 40 nodes. Other modules (1.03%) include all small modules with nodes < 4 per modules show in grey node. b Four major modules, each of which is classified at the phylum level. c Heatmap showing the correlation between the top 30 abundant taxa at the family level and environmental factors. Blue stands for negative correlation, while red stands for positive correlation. The correlation is obtained by Spearman correlation coefficient. DO, dissolved oxygen; NO3-N, nitrate nitrogen; ORP, oxidation reduction potential; NO2-N, nitrite nitrogen; NH4-N, ammonium nitrogen; EC, electrical conductivity; IC, inorganic carbon; SA, salinity; PO4-P, phosphate phosphorus; Mn, manganese; TN, total nitrogen; TP, total phosphorus; WT, water temperature; Cu, copper; TOC, total organic carbon, TC, total carbon.

水体透明度也从蓝藻开花期到非开花期增加(图 1c)。我们进行了网络共现分析,以解开微生物之间的关系(图 S1a)。结果网络由330个节点组成,由8706条边连接,强正相关的数量(9372)远远高于负相关的数量(1300),每个节点的平均边数为2.933(表 S1)。我们的结果表明,微生物网络是由紧密连接的节点组成的,形成了一种 “小世界” 的拓扑结构(表 S1)。

Fig. S2 The distributions of degree for the real co-occurrence network. The line is the fitting curve of the degree distribution of the real co-occurrence network. The network exhibited a scale-free characteristic, indicating that the network structure was non-random.

该网络表现出无标度的特征(P < 0.05,图 S2),表明网络结构是非随机的。从443个科中选择了前30个丰度高的类群(图 1b)。在水华期间,底部铵氮(NH4-N)、无机碳(IC)、盐度、磷酸盐(PO4-P)、锰(Mn)、总氮(TN)和总磷(TP)与细菌呈正相关。Sphingobacteriaceae、Flavobacteriaceae、Microchaetaceae、Cytophagaceae和 Gemmatimonadaceae与总碳(TC)正相关,而与硝酸盐氮和亚硝酸盐氮(负相关。

水华后微生物氮和碳循环中的功能属相

Fig. 2 Functional genes and enzymes from cyanobacterial bloom to non-bloom periods. a, b Volcano plots show differentially relative abundance genes during bloom and non-bloom periods at KEGG orthology group (KO) and KEGG EC number (EC) levels. Each point represents an individual gene or protein, and q value represents the corrected P value. Red represents significant uptick and blue represents significant downtick (q < 0.01), respectively. c The abundance of functional genes across three periods from biological triplicates based on KO level. d The abundance of protein at EC level across three periods. NS, not significant; *P < 0.05, ** P < 0.01, *** P < 0.001. The statistic is nonparametric Kruskal-Wallis test.

与蓝藻暴发期相比,在非暴发期有14个基因明显上调,13个基因明显下调(图 2a)。此外,与蓝藻藻华期相比,非藻华期有12个蛋白质明显上调,9个蛋白质明显下调(图 3b)。差异功能基因和蛋白质丰度以生物三倍体显示(图 2c,d)。在NBI时期,fwdB、nirB、nasA和hepA明显增加,而mcr比蓝藻盛行时期明显减少。在NBI时期,参与微生物代谢的蛋白质氨基苯甲酸盐降解(ANDAc)、氮代谢(NIRD)、丙酮酸代谢(OADB)和多环芳烃降解(PHT5)明显增加,而淀粉和蔗糖代谢(MAPA)与蓝藻盛行时期相比明显减少。

Fig. S3 Functional gene (a-e) and enzyme (f-j) regression analysis. X-axes corresponds to sampling time (the day of the year). The S represents the surface water layer, and B represents the bottom water layer.

在基因和蛋白水平上,两个非开花期(NBI和NBII)之间没有明显差异(图 S3)。综上所述,我们的结果表明,微生物的碳和氮循环可能在蓝藻水华和回归过程中发挥重要的生物学作用。

Fig. 3 Functional gene analysis of one-carbon cycle process. a One-carbon cycle diagram and heatmap showing the abundance of key genes in surface and bottom waters. Data were normalized in the horizontal direction (Z-score). Color bars represent Z-score values. The S represents the surface water layer, and B represents the bottom water layer. X-axis represents the sampling day in 2014. b The abundance of key functional genes between three different periods. Number of gene reads is presented as mean ± SE. Significant differences among stages are indicated by alphabetic letters above the bars, determined by multiple comparison LSD-T test (P < 0.05).

为了探索微生物群落在不同水华时期的氮和碳循环生物过程中的功能。我们分析了氮和一碳循环中的主要功能基因。以氮循环为例,硝化作用(nif)、同化作用(asm)、反硝化作用(dnif)和氨化作用(amm)的丰度在蓝藻水华期较低,但在非水华期的第一阶段增加,在非水华期的第二阶段减少(图 3)。

Fig. 4 Functional gene analysis of nitrogen cycle process. a Nitrogen cycle diagram, and heatmap showing the relative abundance of key genes. Data were normalized in the horizontal direction (Z-score). Color bars represent Z-score values. The S represents the surface water layer, and B represents the bottom water layer. X-axis represents the sampling time (day) in 2014. b The abundance of key functional genes between three different periods. Number of gene reads is presented as mean ± SE. Significant differences among stages are indicated by alphabetic letters above the bars, determined by multiple comparison LSD-T test (P < 0.05).

有趣的是,在一碳循环中发现了一致的趋势,包括甲烷生成(mcr)、甲烷氧化(mmo)、甲醇氧化(mxa)、甲醛氧化(mab)和甲酸氧化(fdh/fdo)(图 4)。

Fig. S4 Volcano plots for gene (a) and enzyme (b) expression at different periods. The left side is comparison of cyanobacterial bloom and NBⅠ, the right side is NBⅠ and NBⅡ. Red represents significant uptick and blue represents significant downtick of cyanobacterial bloom relative to NBⅠ period (q < 0.01).

对于氮循环和一碳循环,在蓝藻繁殖后,浮游植物是丰富的碳和氮的来源。因此,在NBI时期(第325 天和第332 天),编码氮循环和一碳循环的微生物基因相对较多。我们还比较了氮循环和一碳循环不同阶段特定基因的丰度和组间差异(图S4)。对于氮循环,与蓝藻盛行期相比,NBII中编码基因的相对丰度丰富,尤其是nasAnarGnirB(P<0.05),只有一个参与硝化作用的基因(hao)被检测到(图 4)。至于单碳循环过程,参与mcrmmomxamabfdhfdo的基因在不同的水华阶段有不同的丰度(图 4)。

Fig. S5 The relative abundance of tricarboxylic acid cyclic catalytic enzymes. Data were normalized in the horizontal direction (Z-score). Color bars represent Z-score values. The S represents the surface water layer, and B represents the bottom water layer. X-axis represents the sampling day in 2014. PYD, pyruvate dehydrogenase; CIS, citrate synthase; ACH, aconitate hydratase; ISD, isocitrate dehydrogenase; OXD, α-oxoglutarate dehydrogenase; SCS, succinyl-CoA synthet; SUD, succinate dehydrogenase; FUM, fumarate; MAD, malate dehydrogenase.

Fig. S6 The relative abundance of tricarboxylic acid cyclic catalytic enzymes from cyanobacterial bloom to non-bloom periods. Data were normalized in the horizontal direction (Z-score). Color bars represent Z-score values. X-axis represents the sampling day in 2014.

我们对三羧酸循环(TCA)进行了同样的分析,TCA循环中的功能基因变化与氮循环中的不同(图 S5,S6)。综上所述,这些结果表明,氮循环和一碳循环与蓝藻水华之间存在关联。

Fig. S7 Weighted gene co-expression network analysis. a Scale-free topological network of samples by WGCNA. Scale independence (Left) and mean connectivity (Right) were plotted, respectively. b Module and eigengene network plots, all the genes are divided into seven modules, the heatmap showing the correlation among the modules. c Heatmap of module-environmental factors relationships revealed by WGCNA analysis. The color shade indicates the correlation size, red represents positive correlation and green indicates negative correlation, respectively. The values inside the brackets shows the corrected P-values. d Module membership plots of “MEblue”. The red line indicates the fitted regression line and the shaded area is 95% confidence interval.

我们的WGCNA分析结果确定了八个共表达模块。这些模块按其包含的基因数量从小到大不等。八个模块的基因数量分别为36、47、138、171、181、1126、1227和1435。总的来说,1455 个基因不属于这八个模块中的任何一个。为了更好地阐明构建的共表达模块之间的相互作用,我们分析了关键基因之间的连接程度(图 S7)。

甲基单胞菌通过氮和碳循环促进蓝藻水华消退


Fig. 5 Relative abundance of bacteria and differential bacteria abundance between bloom and non-bloom periods. a Heatmap of the relative abundance of top 35 microbial taxa abundance at the genus level. The heatmap scale is the logarithm of bacteria relative abundance (base 10). b Volcano plot for 1659 bacterial OTUs between two periods (cyanobacterial bloom and non-bloom). Each point represents an individual genus, and q-value represents the corrected P value. Red represents significant uptick and blue represents significant downtick of cyanobacterial bloom relative to non-bloom periods (q < 0.01). c Causal mediation analysis among the Methylomonas sp., phytoplankton biomass and one-carbon cycle. d Causal mediation analysis among the Methylomonas sp., phytoplankton biomass and nitrogen cycle. The arrows indicate the delta associations, with estimate (Es) and P value.

重要的是,Synechococcus sp.、Pedosphaera sp.和Ilumatobacter sp.是所有时期的主导细菌群。在非开花期,Gemmatimonas sp.和 Microcystis sp.的丰度要比开花期低很多。有趣的结果是,甲基单胞菌的丰度与蓝藻水华的发生和消退密切相关(图 5a)。在水华阶段,当浮游植物生物量高时,甲基单胞菌的丰度很低。然而,其丰度在NBⅠ期增加,在NBⅡ期减少。随着水华的发展,在蓝藻水华发生期和回归期之间发现了细菌群落的差异(图 5b)。与蓝藻水华期相比,非水华期的 Methyloferula sp.、Methylocapsa sp.、Methylococcus sp.、Methylocaldum sp.、Iridovirus sp.和 Sideroxydans sp.的丰度显著增加(P < 0.01)。然而,*Raphidiopsis(Cylindrospermopsis)*sp.、Hyphomicrobium sp.、*Mariniradius8 sp.、Gemmatimonas sp.和 Alphalipothrixvirus sp.的丰度明显下降(P < 0.01)。

Fig. S8 The correlation among the Methylomonas, phytoplankton biomass, and cyanobacterial bloom. P < 0.05,* P < 0.01. Biomass, total biomass of phytoplankton in waters. The bloom stage used here is bloom and non-bloom.

甲基单胞菌的丰度与蓝藻水华的下降密切相关,因为甲基单胞菌与浮游植物生物量之间存在明显的负相关关系(图 S8)。此外,我们的因果调解分析表明,甲基单胞菌可能有助于水库在蓝藻爆发后的水质恢复。例如,甲基单胞菌可能通过增加氮循环(66.13%,图 5c)和碳循环(63.74%,图 5d)来促进浮游植物生物量的减少。

讨论

有害蓝藻藻华的爆发可在水体中产生蓝藻毒素,对饮用水水库的安全构成重大威胁(Schneider et al., 2020)。以往对浮游植物藻华的研究主要集中在浮游植物群落动态以及它们与环境变量和细菌种类的关系上(Liu et al., 2014; Liu et al., 2019b),但有关微生物功能动态的研究很少。在本研究中,本研究获得了水库微囊藻藻华爆发和消退过程中的样本,重点研究了单碳代谢和氮循环中的微生物功能,研究结果有助于揭示水库微生物的结构和功能对蓝藻藻华消退的影响。

微生物单碳氮循环可能促进蓝藻藻华退化

利用甲基营养体生产单碳化学品实现绿色经济已成为一种新趋势(Govindaraju et al., 2022; Hu et al., 2022; Tuyishime and Sinumvayo, 2020)。甲烷营养体可以通过微粒甲烷单氧酶 (pMMO) 和/或可溶性甲烷单氧酶 (sMMO) 的活性将甲烷氧化成甲醇(Juttner and Watson, 2007a)。此外,MMO作为甲烷营养体的核心酶之一,具有良好的生物技术应用前景(Khider et al., 2021)。甲基辅酶M还原酶作为产甲烷和产甲烷古菌中的关键酶,是产甲烷和厌氧甲烷氧化古菌的标记(Juttner and Watson, 2007a; Nayak et al., 2017)。

固氮微生物在水生态系统功能中发挥重要作用(Mohr et al., 2021; Stevens, 2019)。研究发现水体透明度与蓝藻藻华发生呈负相关(Ionescu et al., 2009; Yang et al., 2018)。强光可能会抑制丝状嗜热蓝藻处理的固氮反应,因为氧气浓度可能会抑制固氮作用,使其在黑暗中的固氮率更高(Ionescu et al., 2009)。在本研究中,随着蓝藻藻华的爆发,水中的透明度和溶解氧减少,而氮循环则呈现相反的趋势。研究观察到硝化、同化、异化和反硝化过程中的主要功能基因在10月藻华期过后的11月NBI过程中出现一个峰值。此外,这个峰值滞后于藻华峰值。这些结果与在总溶解氮浓度的影响下,浮游植物的组成在藻华前后有明显不同的现象是一致的(Cui et al., 2017)。水中反硝化细菌的增加可以提高水库的自净能力,narGnirS基因组都是反硝化细菌群落的主要活性成分,有可能与反硝化途径直接相关。反硝化和异态硝酸盐还原为铵是决定水环境中氮去除和内部循环的重要异态硝酸盐还原途径(Jiang et al., 2020)。反硝化作用是水生系统脱氮的一个重要途径,有利于水质改善(Yu et al., 2014)。与氮代谢相关的基因包括硝态氮/氨态氮转运体、硝态氮/亚硝态氮还原酶和氮同化,这表明微生物可以利用多种氮源(Zhou et al., 2020b)。

利用基因编辑技术改造细菌以减少大气中的温室气体已被广泛研究,现在更多的研究表明,碳和氮循环不是独立的,而是相互关联的,有时在自然条件下是耦合的(Bhattarai et al., 2019; Zheng et al., 2018)。这些结果都表明,在藻华回归过程中,微生物单碳代谢和氮循环功能基因高表达加速了水体中碳源和氮源的利用,从而降低了富营养化水平,促水库蓝藻藻华恢复。

甲烷氧化细菌在水库蓝藻藻华退化中起着重要作用

水体分层和氮的转化可能以复杂的方式驱动重氮营养细菌的群落结构和活动,进而影响水生氮循环(Wang et al., 2015)。浮游植物释放的溶解有机物早已被证实是细菌的重要碳源(Cole, 1982)。细菌的系统发育和功能基因被证明与水面微生物有关(Cunliffe et al., 2008)。在此项研究中,大多数富集基因与有机物的降解有关,表层和底层水样的基因数量没有显著差异。这可能是因为较高的浮游植物生物量可能在藻华期产生足够多的有机物。甲基单胞菌 (Methylomonas sp.) 已被证明可以利用甲烷进一步产生甲醇、甲醛、甲酸和琥珀酸等碳源为唯一碳源(Chen et al., 2020; Gunthel et al., 2019; Nguyen et al., 2019; Zha et al., 2021)。一些研究表明世界各地日益增多的蓝藻藻华与气候变化密切相关(Abreu et al., 2018)。甲基单胞菌 (Methylomonas sp.) 是一种甲烷氧化细菌,其细菌丰度在非藻华阶段占优势。在蓝藻藻华爆发初期无机物积累后,单碳循环代谢基因富集;蓝藻藻华消退后,单碳循环基因丰度恢复。研究发现,甲基单胞菌 (Methylomonas sp.) 的细菌丰度上升与蓝藻藻华的消退呈现出一致的趋势,两者相互影响,相互平衡,这一点在过去的研究中没有得到重视。好氧甲烷氧化耦合反硝化作用可能是全球甲烷和氮循环的重要环节,而甲基单胞菌具有低氧、微氧和好氧甲烷氧化耦合反硝化作用的能力(Cao et al., 2019; Zhang et al., 2020b; Zhu et al., 2016a)。因果中介分析结果表明,在微囊藻藻华之后,甲基单胞菌 (Methylomonas sp.) 加速了水库水体中微生物单碳代谢和氮循环(图4-11),而微生物的单碳代谢和氮循环可以对降低富营养化水平有益。此外,甲基单胞菌 (Methylomonas sp.) 耦合甲烷氧化作用可还原钒酸盐(Zhang et al., 2020a)。通过增加铜离子浓度来增强甲烷单氧酶 (pMMO) 的活性(Wang et al., 2022),或添加单宁酸-铁复合物作为微生物转化甲烷的介质(Kang et al., 2022),可以改善单碳代谢,进而促使水体中的碳含量(温室气体)降低,这是对抗水库蓝藻藻华和保护饮用水资源的新思路之一。

小结

蓝藻藻华对内陆水体浮游生物群落的结构和功能有深远影响,有害蓝藻藻华的爆发可在水体中产生蓝藻毒素,对饮用水水库的安全构成重大威胁。但很少有研究关注藻华后基于微生物过程在单碳和氮循环中对水质改善的影响。本研究比较了一个亚热带水库中微藻藻华(微囊藻属)爆发期间及消退过程中细菌群落结构与功能,特别关注了微生物单碳和氮代谢。研究结果表明,微生物单碳和氮循环在蓝藻藻华爆发后水质恢复中起着关键作用,微生物单碳和氮循环功能基因丰度与蓝藻藻华呈显著负相关。在蓝藻藻华恢复过程中,narGnirSnasA的富集加速了水体中氮源的利用,从而降低了水体富营养化水平,促进了水库水质恢复。这些结果表明,微生物单碳和氮代谢有益于藻华后水质恢复。本章节研究内容揭示了蓝藻藻华后水库恢复过程中的微生物功能,为保护饮用水源提供了一个新思路。

参考文献:

[1] Yu, Z., Peng, X., Liu, L., Yang, J.R., Zhai, X., Xue, Y., Mo, Y. and Yang, J., 2023. Microbial one‑carbon and nitrogen metabolisms are beneficial to the reservoir recovery after *cyanobacterial *bloom. Science of the Total Environment 856(Pt 1), 159004.DOI:10.1016/j.scitotenv.2022.159004

[2]彭璇.碳氮循环微生物人工群落构建及相互作用研究[D].2023.

|爱学R语言的小璇
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值