
入门教学
聪明的小k
这个作者很懒,什么都没留下…
展开
-
tensorflow从入门到放弃再到精通(3.2):构建模型详解
回顾一下生物神经元组织:我们把一组长度为的输入向量原创 2020-03-17 18:24:01 · 384 阅读 · 0 评论 -
tensorflow从入门到放弃再到精通(3.1):认识手写数字图片训练集
前面我们了解了线性回归的问题,接下来认识一下分类的问题,其中一个典型问题就是教会机器识别图片中的物体。而在图片分类中,最简单的就是0~9数字图片识别,他也是非常重要的,显示应用在邮政编码,快递单号,手机号码识别等。机器学习是需要从数据之中学习的,因此我们需要大量真是样本数据。手写数字图片,也是真是由大量的真人手写的图片组成,为了方便存储和计算,一般会把收集到的原始图片保存在固定的大小(siz...原创 2020-03-17 01:02:13 · 387 阅读 · 0 评论 -
tensorflow从入门到放弃再到精通(2.3):线性模型实战案例
没病?没病走两步。来走两步试试啊?好!试试就试试!!请听题:数据源,没有!背景故事,没有!随便指定一下w=1.477,b=0.089,按照这个模型自己找去采样吧好的,题目很明了,我们直接开搞1.数据采样不用头疼,为了更好的模拟真是样本的观测误差,我们给样本加上点误差自变量,那就是均值为0,标准差为0.01的高斯分布随机采样100次,我们就能获得n个样本的训练数据...原创 2020-03-14 00:13:33 · 295 阅读 · 1 评论 -
tensorflow从入门到放弃再到精通(2.2):回归问题——优化方式-梯度下降
优化方法对于单神经元模型,我们可以使用消元法得到精确解。但对于多个数据点,这种解很可能不存在,我们只能借助数值去优化得到一个非常相似的数值结果。为什么叫做优化?因为我们需要借助计算机强大的计算能力去多次“搜索”和“试错”,从而一步步的降低误差L,而最简单的优化方式就是暴力搜索和随机尝试,比如找到最合适的w*和b*,我们就可以从部分实数空间中随机选择w和b,并计算出与真实模型的误差,然后从测...原创 2020-03-13 21:18:32 · 388 阅读 · 0 评论 -
tensorflow从入门到放弃再到精通(2.1):回归问题——神经元模型
神经模型成年人大脑中包含了约 1000 亿个神经元,每个神经元通过树突获取输入信号,通过轴 突传递输出信号,神经元之间相互连接构成了巨大的神经网络,从而形成了人脑的感知和 意识基础,下图是一种典型的生物神经元结构。1943 年,心理学家沃伦·麦卡洛克 (Warren McCulloch)和数理逻辑学家沃尔特·皮茨(Walter Pitts)通过对生物神经元的研究, 提出了模拟生物神经元机制的人工...原创 2020-03-13 19:43:02 · 471 阅读 · 0 评论 -
tensorflow从入门到放弃再到精通(1):环境搭建
一般来说,环境的搭建分为4大步,安装python解释器 Anaconda,安装 CUDA加速库,安装 TensorFlow 框架和安装常用编辑器。1.1 Anaconda安装Python 解释器是让以 Python 语言编写的代码能够被 CPU 执行的桥梁,是 Python 语言的核心软件。各位大佬可以从 https://www.python.org网站下载最新版本的解释器, 像普通的应用软件...原创 2020-02-02 17:45:26 · 1452 阅读 · 2 评论