
math
文章平均质量分 93
cxxu1375
这个作者很懒,什么都没留下…
展开
-
AM@二重积分@直角坐标系下的计算
为了方便讨论,二重积分表达式:∬Df(x,y)dx\iint\limits_{D}f(x,y)\mathrm{d}xD∬f(x,y)dx被积分的二元函数记为g=f(x,y)g=f(x,y)g=f(x,y)奇偶性:判断被积函数是否关于变量kkk对称(包括奇函数对称和偶函数对称)如果符合奇函数对称,那么如果符合偶函数对称,那么∬Df(x,y)dσ=2∬D1f(x,y)dσ\iint\limits_{D}f(x,y)\mathrm{d}\sigma=2\iint\limits_{D_1}f(x,y)\m原创 2022-10-26 22:07:39 · 3203 阅读 · 0 评论 -
AM@高阶导数求导法则和常用的初等函数的高阶导数公式
- 高阶导数求导法则- 常用的初等函数的高阶导数- 这部分内容为泰勒公式作铺垫,特别是幂型高阶导数原创 2022-09-07 15:24:37 · 4305 阅读 · 0 评论 -
EM@坐标系@直角坐标系@坐标伸缩变换@坐标平移公式@图像伸缩变换
- 坐标系@数轴@直角坐标系@空间直角坐标系- 坐标变换@图像伸缩变换及应用原创 2022-09-06 21:47:13 · 1139 阅读 · 0 评论