前言
本次分两篇来记录链表的内容。
正文
与数组相比,链表是一种稍微复杂一点的数据结构。这两个非常基础、非常常用的数据结构,常常将会放到一块儿来比较。两者有什么区别:
从底层的存储结构上来看:从下图中我们看到,数组需要一块连续的内存空间来存储,对内存的要求比较高。如果申请一个 100MB 大小的数组,当内存中没有连续的、足够大的存储空间时,即便内存的剩余总可用空间大于 100MB,仍然会申请失败。而链表恰恰相反,它并不需要一块连续的内存空间,它通过“指针”将一组零散的内存块串联起来使用,所以如果我们申请的是 100MB 大小的链表,根本不会有问题
主要介绍三种链表结构:单链表、双向链表、循环链表。
单链表
链表通过指针将一组零散的内存块串联在一起。其中,把内存块称为链表的“结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址。如图所示,把这个记录下个结点地址的指针叫作后继指针 next。
其中有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。习惯性地把第一个结点叫作头结点,把最后一个结点叫作尾结点。其中,头结点用来记录链表的基地址。有了它,就可以遍历得到整条链表。而尾结点特殊的地方是:指针不是指向下一个结点,而是指向一个空地址 NULL,表示这是链表上最后一个结点。
与数组一样,链表也支持数据的查找、插入、删除。
在对数组进行数据的插入删除时,为了保持内在数据的连续性,需要做大量的数据搬移操作,所以时间复杂度为O(n),而在链表中插入或者删除一个数据,我们并不需要为了保持内存的连续性而搬移结点,因为链表的存储空间本身就不是连续的。所以链表的插入和删除是非常快速的。
在对链表进行插入删除操作时,只需要考虑相信结点的指针改变,对应的时间复杂度为O(1)。如下图所示。
链表要想随机访问第 k 个元素,就没有数组那么高效了。因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。所以链表随机访问性能没有数组好,时间复杂度为O(n)。
循环链表
循环链表是一种特殊的单链表。它跟单链表唯一的区别就在尾结点。单链表的尾结点指针指向空地址,表示这就是最后的结点了。而循环链表的尾结点指针是指向链表的头结点,它像一个环一样首尾相连,所以叫作循环链表。
和单链表相比,循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。比如著名的约瑟夫问题。尽管用单链表也可以实现,但是用循环链表实现的话,代码就会简洁很多。
双向链表
单向链表只有一个方向,结点只有一个后继指针 next 指向后面的结点。而双向链表支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。
从结构上来看,双向链表可以支持 O(1) 时间复杂度的情况下找到前驱结点,正是这样的特点,也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。
在实际的软件开发中,从链表中删除一个数据有两种情况:
- 删除结点中“值等于菶给定值”的结点
不管是单链表还是双向链表,为了查找到值等于给定值的结点,都需要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,然后再通过前面提到的指针操作将其删除。 尽管单纯的删除操作时间复杂度是 O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为 O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为 O(n)。 - 删除给定指针指向的结点
已经找到了要删除的结点,但是删除某个结点 q 需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到 p->next=q,说明 p 是 q 的前驱结点。但是对于双向链表来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,单链表删除操作需要 O(n) 的时间复杂度,而双向链表只需要在 O(1) 的时间复杂度内就搞定了。
同理,如果我们希望在链表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优势。双向链表可以在 O(1) 时间复杂度搞定,而单向链表需要 O(n) 的时间复杂度。除了插入、删除操作有优势之外,对于一个有序链表,双向链表的按值查询的效率也要比单链表高一些。因为,我们可以记录上次查找的位置 p,每次查询时,根据要查找的值与 p 的大小关系,决定是往前还是往后查找,所以平均只需要查找一半的数据。
用空间换时间的设计思想:当内存空间充足的时候,如果更加追求代码的执行速度,我们就可以选择空间复杂度相对较高、但时间复杂度相对很低的算法或者数据结构。相反,如果内存比较紧缺,比如代码跑在手机或者单片机上,这个时候,就要反过来用时间换空间的设计思路。
双向循环链表
链表VS数组
时间复杂度 | 数组 | 链表 |
---|---|---|
插入删除 | O(n) | O(1) |
随机访问 | O(1) | O(n) |
数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。链表本身没有大小的限制,天然地支持动态扩容。
如何基于链表实现 LRU 缓存淘汰算法?
缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如常见的 CPU 缓存、数据库缓存、浏览器缓存等等。缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。常见的策略有三种:先进先出策略 FIFO(First In,First Out)、最少使用策略 LFU(Least Frequently Used)、最近最少使用策略 LRU(Least Recently Used)。
缓存实际上就是利用了空间换时间的设计思想。如果把数据存储在硬盘上,会比较节省内存,但每次查找数据都要询问一次硬盘,会比较慢。但如果通过缓存技术,事先将数据加载在内存中,虽然会比较耗费内存空间,但是每次数据查询的速度就大大提高了。
所以对于执行较慢的程序,可以通过消耗更多的内存(空间换时间)来进行优化;而消耗过多内存的程序,可以通过消耗更多的时间(时间换空间)来降低内存的消耗。
回到正题:思路:维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。当有一个新的数据被访问时,我们从链表头开始顺序遍历链表。
-
如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。
-
如果此数据没有在缓存链表中,又可以分为两种情况:
如果此时缓存未满,则将此结点直接插入到链表的头部; - 如果此时缓存未满,则将此结点直接插入到链表的头部;如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。
CPU缓存机制
CPU在从内存读取数据的时候,会先把读取到的数据加载到CPU的缓存中。而CPU每次从内存读取数据并不是只读取那个特定要访问的地址,而是读取一个数据块并保存到CPU缓存中,然后下次访问内存数据的时候就会先从CPU缓存开始查找,如果找到就不需要再从内存中取。这样就实现了比内存访问速度更快的机制,也就是CPU缓存存在的意义:为了弥补内存访问速度过慢与CPU执行速度快之间的差异而引入。
回文字符串
由于回文串最重要的就是对称,那么最重要的问题就是找到那个中心,用快指针每步两格走,当他到达链表末端的时候,慢指针刚好到达中心,慢指针在过来的这趟路上还做了一件事,他把走过的节点反向了,在中心点再开辟一个新的指针用于往回走,而慢指针继续向前,当慢指针扫完整个链表,就可以判断这是回文串,否则就提前退出,总的来说时间复杂度按慢指针遍历一遍来算是O(n),空间复杂度因为只开辟了3个额外的辅助,所以是o(1)
ps:本内容转自极客时间数据结构与算法之美课程。