根据上篇翻译的文章以及很多个帖子,都讲述了树状数组最基本的功能就是tree[i]保存的是位置i左边小于等于a[i]的数的个数.
这样也就可以解释代码中为什么有f[i]=getsum(sd[i-1])-getsum(st[i]))/2。因为getsum保存的就是左边比i小的数,注意因为序列是通过dfs求出的,因而每个节点都有进入和退出过程,也就是每个节点都出现了2次,比如说对于数4来说,有4个节点,假设3为顶点,边的关系是3-2-1,3-2-4,那么dfs扫描出的序列就是3,2,1,1,4,4,2,3.所以求出的最终结果就需要除以2,因为每个数字都出现了2次。
至于为什么是从n-->1,我也纠结了半天,后来总算是YY出了一点思路【也可能不对】,因为已经将tree初始过了,考虑最原始的BIT,我们是一边遍历原始数组,一边getsum,一边update树,更新时,tree[i]+=1,这里提前将tree update过了,那么只能从后向前走,update(-1)了。假定最后一个点是n,那么在考虑其他节点的时候是不需要考虑这个点的,因为任何一个点都比最后这个点小,所以。。。update的时候是(-1)。
代码中注释的部分是原作者的,为了证实一下我自己YY出的结果是否正确,我测试了一下,果然A掉了。所以我的想法应该是对的,如果从头开始的话,需要从头遍历数组,得结果的时候需要两次update(1),这样的话仅仅需要从1-->就可以了。
代码如下:
#pragma comment(linker,"/STACK:100000000,100000000")
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
using namespace std;
const int maxn=100005;
vector<int>vt[maxn];
int bit[2*maxn];
int que[2*maxn];
int st[maxn];
int sd[maxn];
int f[maxn];
int n, rt, num;
void dfs(int u, int fa)
{
que[++num]=u;
for(int i=0; i<vt[u].size(); i++)
{
int v=vt[u][i];
if(v==fa) continue;
dfs(v,u);
}
que[++num]=u;
}
int lowbit(int x)
{
return x&(-x);
}
void update(int x, int val)
{
while(x<=num)
{
bit[x]+=val;
x+=lowbit(x);
}
}
int getsum(int x)
{
int ans=0;
while(x>0)
{
ans+=bit[x];
x-=lowbit(x);
}
return ans;
}
int main()
{
//int a=4,b=3;
//printf("%d",a|b);
while(~scanf("%d%d",&n,&rt),n+rt)
{
for(int i=0; i<=n; i++)
vt[i].clear();
for(int i=1; i<n; i++)
{
int x, y;
scanf("%d%d",&x,&y);
vt[x].push_back(y);
vt[y].push_back(x);
}
fill(st+1,st+1+n,0);
num=0;
dfs(rt,-1);
//每个节点开始和结束的位置
for(int i=1; i<=num; i++)
{
if(!st[que[i]])
st[que[i]]=i;
else
sd[que[i]]=i;
}
memset(bit,0,sizeof(bit));
/*
for(int i=1; i<=num; i++)
update(i,1);
for(int i=n; i>=1; i--)
{
f[i]=(getsum(sd[i]-1)-getsum(st[i]))/2;
update(st[i],-1);
update(sd[i],-1);
}*/
for(int i=1;i<=n;i++)//这里是测试从1-->n的,注意对比
{
update(st[i],1);
update(sd[i],1);
f[i]=(getsum(sd[i]-1)-getsum(st[i]))/2;
}
printf("%d",f[1]);
for(int i=2; i<=n; i++)
printf(" %d",f[i]);
puts("");
}
return 0;
}