杭电 3887 Counting Offspring

根据上篇翻译的文章以及很多个帖子,都讲述了树状数组最基本的功能就是tree[i]保存的是位置i左边小于等于a[i]的数的个数.

这样也就可以解释代码中为什么有f[i]=getsum(sd[i-1])-getsum(st[i]))/2。因为getsum保存的就是左边比i小的数,注意因为序列是通过dfs求出的,因而每个节点都有进入和退出过程,也就是每个节点都出现了2次,比如说对于数4来说,有4个节点,假设3为顶点,边的关系是3-2-1,3-2-4,那么dfs扫描出的序列就是3,2,1,1,4,4,2,3.所以求出的最终结果就需要除以2,因为每个数字都出现了2次。

至于为什么是从n-->1,我也纠结了半天,后来总算是YY出了一点思路【也可能不对】,因为已经将tree初始过了,考虑最原始的BIT,我们是一边遍历原始数组,一边getsum,一边update树,更新时,tree[i]+=1,这里提前将tree update过了,那么只能从后向前走,update(-1)了。假定最后一个点是n,那么在考虑其他节点的时候是不需要考虑这个点的,因为任何一个点都比最后这个点小,所以。。。update的时候是(-1)。

代码中注释的部分是原作者的,为了证实一下我自己YY出的结果是否正确,我测试了一下,果然A掉了。所以我的想法应该是对的,如果从头开始的话,需要从头遍历数组,得结果的时候需要两次update(1),这样的话仅仅需要从1-->就可以了。

代码如下:


#pragma comment(linker,"/STACK:100000000,100000000")
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
using namespace std;

const int maxn=100005;
vector<int>vt[maxn];
int bit[2*maxn];
int que[2*maxn];
int st[maxn];
int sd[maxn];
int f[maxn];
int n, rt, num;

void dfs(int u, int fa)
{
    que[++num]=u;
    for(int i=0; i<vt[u].size(); i++)
    {
        int v=vt[u][i];
        if(v==fa) continue;
        dfs(v,u);
    }
    que[++num]=u;
}

int lowbit(int x)
{
    return x&(-x);
}

void update(int x, int val)
{
    while(x<=num)
    {
        bit[x]+=val;
        x+=lowbit(x);
    }
}

int getsum(int x)
{
    int ans=0;
    while(x>0)
    {
        ans+=bit[x];
        x-=lowbit(x);
    }
    return ans;
}

int main()
{
	//int a=4,b=3;
	//printf("%d",a|b);
    while(~scanf("%d%d",&n,&rt),n+rt)
    {
        for(int i=0; i<=n; i++)
            vt[i].clear();
        for(int i=1; i<n; i++)
        {
            int x, y;
            scanf("%d%d",&x,&y);
            vt[x].push_back(y);
            vt[y].push_back(x);
        }
        fill(st+1,st+1+n,0);
        num=0;
        dfs(rt,-1);
		//每个节点开始和结束的位置
        for(int i=1; i<=num; i++)
        {
            if(!st[que[i]])
				st[que[i]]=i;
            else 
				sd[que[i]]=i;
        }
        memset(bit,0,sizeof(bit));
		/*
        for(int i=1; i<=num; i++)
            update(i,1);
        for(int i=n; i>=1; i--)
        {
            f[i]=(getsum(sd[i]-1)-getsum(st[i]))/2;
            update(st[i],-1);
            update(sd[i],-1);
        }*/
		for(int i=1;i<=n;i++)//这里是测试从1-->n的,注意对比
		{
			update(st[i],1);
			update(sd[i],1);
			f[i]=(getsum(sd[i]-1)-getsum(st[i]))/2;
		}
        printf("%d",f[1]);
        for(int i=2; i<=n; i++)
            printf(" %d",f[i]);
        puts("");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值