spark中excutor的个数、内存大小、core的个数、task的个数、分区的个数、集群的资源情况等的关系

目录

 

1、Spark性能调优之资源分配  大体上这两个方面:core    mem

 

(1)、分配哪些资源?

(2)、在哪里分配这些资源?

(3)、调节到多大,算是最大呢?

(4)、为什么调节了资源以后,性能可以提升?

2、分区个数和task个数的关系

3、Spark性能调优之合理设置并行度

(1)、Spark的并行度指的是什么?

(2)、如何去提高并行度?

 


1、Spark性能调优之资源分配  大体上这两个方面:core    mem

 

(1)、分配哪些资源?

   executor、core per executor、memory per executor、driver memory

(2)、在哪里分配这些资源?

   在我们在生产环境中,提交spark作业时,用的spark-submit shell脚本,里面调整对应的参数

/usr/local/spark/bin/spark-submit \

--class cn.spark.sparktest.core.WordCountCluster \

--num-executors 3 \  配置executor的数量

--executor-memory 100m \  配置每个executor的内存大小

--executor-cores 3 \  配置每个executor的cpu core数量

--driver-memory 100m \  配置driver的内存(影响很大)

/usr/local/SparkTest-0.0.1-SNAPSHOT-jar-with-dependencies.jar \

(3)、调节到多大,算是最大呢?

第一种,Spark Standalone,公司集群上,搭建了一套Spark集群,你心里应该清楚每台机器还能够

给你使用的,大概有多少内存,多少cpu core;那么,设置的时候,就根据这个实际的情况,

去调节每个spark作业的资源分配。比如说你的每台机器能够给你使用4G内存,2个cpu core;

20台机器;executor,20;平均每个executor:4G内存,2个cpu core。

案例:

第二种,Yarn。资源队列。资源调度。应该去查看,你的spark作业,要提交到的资源队列,  

 hadoop   spark  storm 每一个队列都有各自的资源(cpu mem)

大概有多少资源?500G内存,100个cpu core;executor,50;平均每个executor:10G内存,2个cpu core。

(4)、为什么调节了资源以后,性能可以提升?

增加executor:

   如果executor数量比较少,那么,能够并行执行的task数量就比较少,就意味着,我们的Application的并行执行的能力就很弱。

   比如有3个executor,每个executor有2个cpu core,那么同时能够并行执行的task,就是6个。6个执行完以后,再换下一批6个task。增加了executor数量以后,那么,就意味着,能够并行执行的task数量,也就变多了。比如原先是6个,现在可能可以并行执行10个,甚至20个,100个。那么并行能力就比之前提升了数倍,数十倍。相应的,性能(执行的速度),也能提升数倍~数十倍。

 

增加每个executor的cpu core:

   也是增加了执行的并行能力。原本20个executor,每个才2个cpu core。能够并行执行的task数量,

就是40个task。现在每个executor的cpu core,增加到了5个。能够并行执行的task数量,就是100个task。执行的速度,提升了2倍左右。

 

增加每个executor的内存量:

增加了内存量以后,对性能的提升,有三点:

   1、如果需要对RDD进行cache,那么更多的内存,就可以缓存更多的数据,将更少的数据写入磁盘

甚至不写入磁盘。减少了磁盘IO

   2、对于shuffle操作,reduce端,会需要内存来存放拉取的数据并进行聚合。如果内存不够,也会写入磁盘。如果给executor分配更多内存以后,就有更少的数据,需要写入磁盘,甚至不需要写入磁盘。减少了磁盘IO,提升了性能。

   3、对于task的执行可能会创建很多对象。如果内存比较小,可能会频繁导致JVM堆内存满了,

然后频繁GC,垃圾回收,minor GC和full GC。(速度很慢)。内存加大以后,带来更少的GC,垃圾回收,

避免了速度变慢,性能提升

2、分区个数和task个数的关系

(1)、RDD在计算的时候,每个分区都会起一个task,所以rdd的分区数目决定了总的的task数目。
申请的计算节点(Executor)数目和每个计算节点核数,决定了你同一时刻可以并行执行的task。

  • 每个节点可以起一个或多个Executor。
  • 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
  • 每个Task执行的结果就是生成了目标RDD的一个partiton。
  • Task被执行的并发度 = Executor数目(SPARK_EXECUTOR_INSTANCES) * 每个Executor核数(SPARK_EXECUTOR_CORES)

3、Spark性能调优之合理设置并行度

 

(1)、Spark的并行度指的是什么?

    spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度!

    当分配完所能分配的最大资源了,然后对应资源去调节程序的并行度,如果并行度没有与资源相匹配,那么导致你分配下去的资源都浪费掉了。同时并行运行,还可以让每个task要处理的数量变少(很简单的原理。合理设置并行度,可以充分利用集群资源,减少每个task处理数据量,而增加性能加快运行速度。

    举例:

        假如, 现在已经在spark-submit 脚本里面,给我们的spark作业分配了足够多的资源,比如50个executor ,每个executor 有10G内存每个executor有3个cpu core 。 基本已经达到了集群或者yarn队列的资源上限。

task没有设置,或者设置的很少,比如就设置了,100个task 。 50个executor ,每个executor 有3个core ,也就是说
Application 任何一个stage运行的时候,都有总数150个cpu core ,可以并行运行。但是,你现在只有100个task ,平均分配一下,每个executor 分配到2个task,ok,那么同时在运行的task,只有100个task,每个executor 只会并行运行 2个task。 每个executor 剩下的一个cpu core 就浪费掉了!你的资源,虽然分配充足了,但是问题是, 并行度没有与资源相匹配,导致你分配下去的资源都浪费掉了。合理的并行度的设置,应该要设置的足够大,大到可以完全合理的利用你的集群资源; 比如上面的例子,总共集群有150个cpu core ,可以并行运行150个task。那么你就应该将你的Application 的并行度,至少设置成150个,才能完全有效的利用你的集群资源,让150个task ,并行执行,而且task增加到150个以后,即可以同时并行运行,还可以让每个task要处理的数量变少; 比如总共 150G 的数据要处理, 如果是100个task 每个task 要计算1.5G的数据。 现在增加到150个task,每个task只要处理1G数据

(2)、如何去提高并行度?

   1、task数量,至少设置成与spark Application 的总cpu core 数量相同(最理性情况,150个core,分配150task,一起运行,差不多同一时间运行完毕)官方推荐,task数量,设置成spark Application 总cpu core数量的2~3倍 ,比如150个cpu core ,基本设置 task数量为 300~ 500. 与理性情况不同的,有些task 会运行快一点,比如50s 就完了,有些task 可能会慢一点,要一分半才运行完,所以如果你的task数量,刚好设置的跟cpu core 数量相同,可能会导致资源的浪费,因为 比如150task ,10个先运行完了,剩余140个还在运行,但是这个时候,就有10个cpu core空闲出来了,导致浪费。如果设置2~3倍,那么一个task运行完以后,另外一个task马上补上来,尽量让cpu core不要空闲。同时尽量提升spark运行效率和速度。提升性能。

    2、如何设置一个Spark Application的并行度?

      spark.defalut.parallelism 默认是没有值的,如果设置了值比如说10,是在shuffle的过程才会起作用(val rdd2 = rdd1.reduceByKey(_+_) //rdd2的分区数就是10,rdd1的分区数不受这个参数的影响)

      new SparkConf().set(“spark.defalut.parallelism”,”“500)

    4、RDD.repartition,给RDD重新设置partition的数量

    5、reduceByKey的算子指定partition的数量

                 val rdd2 = rdd1.reduceByKey(_+_,10)  val rdd3 = rdd2.map.filter.reduceByKey(_+_)

    6、val rdd3 = rdd1.join(rdd2)  rdd3里面partiiton的数量是由父RDD中最多的partition数量来决定,因此使用join算子的时候,增加父RDD中partition的数量。

 

  • 10
    点赞
  • 85
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值