TensorFlow中的GNMT模型构建大致过程

Tensorflow中GNMT的实现采取多层双向LSTM构建,构建基本过程如下:

训练过程:

    encoder:

  • 双向(仅第一层双向)                           
bi_output, bi_state = tf.nn.bidirectional_dynamic_rnn(
                      tf.nn.bidirectional_dynamic_rnn(fw_cell,bw_cell,inputs)

    其中fw_cell、bw_cell和下方组装的MultiRNNCell相同,inputs=encoder_emb_inp(词嵌入),而bi_output作为dynamic_rnn的参数,bi_state和encoder_state组成最终输入的encoder_state

  • 单向(其它层)

单层:

(1) tf.contrib.rnn.BasicLSTMCell(num_units,forget_bias=forget_bias)
               (2) tf.contrib.rnn.GRUCell(num_units)
               (3) tf.contrib.rnn.LayerNormBasicLSTMCell

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值