题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1349点击打开链接
有一天,小a给了小b一些数字,让小b帮忙找到其中最大的数,由于小b是一个程序猿,当然写了一个代码很快的解决了这个问题。
这时,邪恶的小c又出现了,他问小b,假如我只需要知道这些数字中的某个区间的最大值,你还能做嘛?
小b经过七七四十九天的思考,终于完美的解决了这道题目,这次,他想也让小c尝尝苦头,于是他问小c,我现在想知道存在多少不同的区间的最大值大于等于k,你还能做吗?
这次,小c犯了难,他来请教身为程序猿的你。
Hint:一个区间指al,al+1,…,ar这一段的数且l<=r,一个区间的最大值指max{al,al+1,…,ar},两个区间不同当且仅当[l1,r1],[l2,r2]中l1不等于l2或r1不等于r2
Input
第一行读入一个正整数n(1<=n<=100000),表示有n个数字。 接下来一行读入n个正整数ai(1<=ai<=100000) 接下来一行一个正整数Q(1<=Q<=100000),表示有Q组询问。 接下来Q行,每行一个正整数k(1<=k<=100000)
Output
Q行,每行一个正整数,表示存在多少区间大于等于k。
Input示例
3 1 2 3 3 1 2 3
Output示例
6 5 3
System Message
(题目提供者)
单调栈的题
这道题一开始数据量就很大。。
注意三个方面
1.在计算每个数区间的子集合个数 需要用(i-l)+(r-i)+(i-l)*(r-i)+1 公式自己观察一段时间就能得出
2.可能会有相同的书 这个时候 就要保证区间具有单向性 即从左到右遍历时 碰到等于的是否继续 而从右到左相反 才能保证不重复计算
3.如果一边遍历完 清空栈再遍历 会有一个数据会t 所以再开个栈就好
个人认为三个地方都值得思考
这个代码因为比较复杂所以跑到临界点 好像因为服务器问题可能会t 不过一般不会
#include <iostream>
#include <queue>
#include <stdio.h>
#include <stdlib.h>
#include <stack>
#include <limits>
#include <string>
#include <string.h>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
using namespace std;
long long int a[111111];
long long int l[111111];
long long int r[111111];
long long int endans[111111];
long long int ans[111111];
stack<long long int > s;
int main()
{
int n=0;
scanf("%d",&n);
{
memset(a,0,sizeof(a));
memset(l,0,sizeof(l));
memset(r,0,sizeof(r));
memset(ans,0,sizeof(ans));
memset(endans,0,sizeof(endans));
while(!s.empty())
s.pop();
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
}
for(int i=1;i<=n;i++)
{
while(1)
{
if(s.empty())
{
s.push(i);
l[i]=1;
break;
}
else
{
if(a[s.top()]<=a[i])
{
l[i]=s.top();
s.pop();
}
else
{
l[i]=s.top()+1;
s.push(i);
break;
}
}
}
}
stack<long long int > ss;
for(int i=n;i>=1;i--)
{
while(1)
{
if(ss.empty())
{
ss.push(i);
r[i]=n;
break;
}
else
{
if(a[ss.top()]<a[i])
{
r[i]=ss.top();
ss.pop();
}
else
{
r[i]=ss.top()-1;
ss.push(i);
break;
}
}
}
}
for(int i=1;i<=n;i++)
{
ans[i]=(i-l[i])+(r[i]-i)+(r[i]-i)*(i-l[i])+1;
}
for(int i=1;i<=n;i++)
{
endans[a[i]]+=ans[i];
}
long long int sum=0;
for(int i=100000;i>0;i--)
{
sum+=endans[i];
endans[i]=sum;
}
int m=0;
scanf("%d",&m);
while(m--)
{
int mid;
scanf("%d",&mid);
printf("%lld\n",endans[mid]);
}
}
}