51Nod - 1349 最大值(单调栈)

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1349点击打开链接

基准时间限制:1 秒 空间限制:131072 KB 分值: 80  难度:5级算法题
 收藏
 关注

有一天,小a给了小b一些数字,让小b帮忙找到其中最大的数,由于小b是一个程序猿,当然写了一个代码很快的解决了这个问题。

这时,邪恶的小c又出现了,他问小b,假如我只需要知道这些数字中的某个区间的最大值,你还能做嘛?

小b经过七七四十九天的思考,终于完美的解决了这道题目,这次,他想也让小c尝尝苦头,于是他问小c,我现在想知道存在多少不同的区间的最大值大于等于k,你还能做吗?

这次,小c犯了难,他来请教身为程序猿的你。

Hint:一个区间指al,al+1,…,ar这一段的数且l<=r,一个区间的最大值指max{al,al+1,…,ar},两个区间不同当且仅当[l1,r1],[l2,r2]中l1不等于l2或r1不等于r2



Input
第一行读入一个正整数n(1<=n<=100000),表示有n个数字。
接下来一行读入n个正整数ai(1<=ai<=100000)
接下来一行一个正整数Q(1<=Q<=100000),表示有Q组询问。
接下来Q行,每行一个正整数k(1<=k<=100000)
Output
Q行,每行一个正整数,表示存在多少区间大于等于k。
Input示例
3
1 2 3
3
1
2
3
Output示例
6
5
3
System Message  (题目提供者)


单调栈的题 

这道题一开始数据量就很大。。

注意三个方面

1.在计算每个数区间的子集合个数 需要用(i-l)+(r-i)+(i-l)*(r-i)+1 公式自己观察一段时间就能得出

2.可能会有相同的书 这个时候 就要保证区间具有单向性 即从左到右遍历时 碰到等于的是否继续 而从右到左相反 才能保证不重复计算

3.如果一边遍历完 清空栈再遍历 会有一个数据会t 所以再开个栈就好

个人认为三个地方都值得思考

这个代码因为比较复杂所以跑到临界点 好像因为服务器问题可能会t 不过一般不会

#include <iostream>
#include <queue>
#include <stdio.h>
#include <stdlib.h>
#include <stack>
#include <limits>
#include <string>
#include <string.h>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
using namespace std;
long long int a[111111];
long long int l[111111];
long long int r[111111];
long long int endans[111111];
long long int ans[111111];
stack<long long int > s;
int main()
{
    int n=0;
    scanf("%d",&n);
    {
        memset(a,0,sizeof(a));
        memset(l,0,sizeof(l));
        memset(r,0,sizeof(r));
        memset(ans,0,sizeof(ans));
        memset(endans,0,sizeof(endans));
        while(!s.empty())
            s.pop();
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&a[i]);
        }
        for(int i=1;i<=n;i++)
        {
            while(1)
            {
                if(s.empty())
                {
                    s.push(i);
                    l[i]=1;
                    break;
                }
                else
                {
                    if(a[s.top()]<=a[i])
                    {
                        l[i]=s.top();
                        s.pop();
                    }
                    else
                    {
                        l[i]=s.top()+1;
                        s.push(i);
                        break;
                    }
                }
            }
        }
        stack<long long int > ss;
        for(int i=n;i>=1;i--)
        {
            while(1)
            {
                if(ss.empty())
                {
                    ss.push(i);
                    r[i]=n;
                    break;
                }
                else
                {
                    if(a[ss.top()]<a[i])
                    {
                        r[i]=ss.top();
                        ss.pop();
                    }
                    else
                    {
                        r[i]=ss.top()-1;
                        ss.push(i);
                        break;
                    }
                }
            }
        }
        for(int i=1;i<=n;i++)
        {
            ans[i]=(i-l[i])+(r[i]-i)+(r[i]-i)*(i-l[i])+1;
        }
        for(int i=1;i<=n;i++)
        {
            endans[a[i]]+=ans[i];
        }
        long long int sum=0;
        for(int i=100000;i>0;i--)
        {
            sum+=endans[i];
            endans[i]=sum;
        }
        int m=0;
        scanf("%d",&m);
        while(m--)
        {
            int mid;
            scanf("%d",&mid);
            printf("%lld\n",endans[mid]);
        }
    }
    
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值