在一些初始化处理后,MD5以512位分组来处理输入文本,每一分组又划分为16个32位子分组。算法的输出由四个32位分组组成,将它们级联形成一个128位散列值。
首先填充消息使其长度恰好为一个比512位的倍数仅小64位的数。填充方法是附一个1在消息后面,后接所要求的多个0,然后在其后附上64位的消息长度(填充前)。这两步的作用是使消息长度恰好是512位的整数倍(算法的其余部分要求如此),同时确保不同的消息在填充后不相同。
四个32位变量初始化为:
A=0x01234567
B=0x89abcdef
C=0xfedcba98
D=0x76543210
它们称为链接变量(chaining variable)
接着进行算法的主循环,循环的次数是消息中512位消息分组的数目。
将上面四个变量复制到别外的变量中:A到a,B到b,C到c,D到d。
主循环有四轮(MD4只有三轮),每轮很相拟。第一轮进行16次操作。每次操作对a,b,c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a,b,c或d中之一。最后用该结果取代a,b,c或d中之一。
以一下是每次操作中用到的四个非线性函数(每轮一个)。
F(X,Y,Z)=(X&Y)|((~X)&Z)
G(X,Y,Z)=(X&Z)|(Y&(~Z))
H(X,Y,Z)=X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&是与,|是或,~是非,^是异或)
这些函数是这样设计的:如果X、Y和Z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。
函数F是按逐位方式操作:如果X,那么Y,否则Z。函数H是逐位奇偶操作符。
设Mj表示消息的第j个子分组(从0到15),<<<s表示循环左移s位,则四种操作为:
FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<<<s)
GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<<<s)
HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<<<s)
II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<<s)
这四轮(64步)是:
第一轮
FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)
第二轮
GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)
第三轮
HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)
第四轮
II(a,b,c,d,M0,6,0xf4292244)
II(d,a,b,c,M7,10,0x432aff97)
II(c,d,a,b,M14,15,0xab9423a7)
II(b,c,d,a,M5,21,0xfc93a039)
II(a,b,c,d,M12,6,0x655b59c3)
II(d,a,b,c,M3,10,0x8f0ccc92)
II(c,d,a,b,M10,15,0xffeff47d)
II(b,c,d,a,M1,21,0x85845dd1)
II(a,b,c,d,M8,6,0x6fa87e4f)
II(d,a,b,c,M15,10,0xfe2ce6e0)
II(c,d,a,b,M6,15,0xa3014314)
II(b,c,d,a,M13,21,0x4e0811a1)
II(a,b,c,d,M4,6,0xf7537e82)
II(d,a,b,c,M11,10,0xbd3af235)
II(c,d,a,b,M2,15,0x2ad7d2bb)
II(b,c,d,a,M9,21,0xeb86d391)
常数ti可以如下选择:
在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。
(2的32次方)
所有这些完成之后,将A,B,C,D分别加上a,b,c,d。然后用下一分组数据继续运行算法,最后的输出是A,B,C和D的级联。
MD5的安全性
MD5相对MD4所作的改进:
1.增加了第四轮.
2.每一步均有唯一的加法常数.
3.为减弱第二轮中函数G的对称性从(X&Y)|(X&Z)|(Y&Z)变为(X&Z)|(Y&(~Z))
4.第一步加上了上一步的结果,这将引起更快的雪崩效应.
5.改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似.
6.近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应.各轮的位移量互不相同.
首先填充消息使其长度恰好为一个比512位的倍数仅小64位的数。填充方法是附一个1在消息后面,后接所要求的多个0,然后在其后附上64位的消息长度(填充前)。这两步的作用是使消息长度恰好是512位的整数倍(算法的其余部分要求如此),同时确保不同的消息在填充后不相同。
四个32位变量初始化为:
A=0x01234567
B=0x89abcdef
C=0xfedcba98
D=0x76543210
它们称为链接变量(chaining variable)
接着进行算法的主循环,循环的次数是消息中512位消息分组的数目。
将上面四个变量复制到别外的变量中:A到a,B到b,C到c,D到d。
主循环有四轮(MD4只有三轮),每轮很相拟。第一轮进行16次操作。每次操作对a,b,c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a,b,c或d中之一。最后用该结果取代a,b,c或d中之一。
以一下是每次操作中用到的四个非线性函数(每轮一个)。
F(X,Y,Z)=(X&Y)|((~X)&Z)
G(X,Y,Z)=(X&Z)|(Y&(~Z))
H(X,Y,Z)=X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&是与,|是或,~是非,^是异或)
这些函数是这样设计的:如果X、Y和Z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。
函数F是按逐位方式操作:如果X,那么Y,否则Z。函数H是逐位奇偶操作符。
设Mj表示消息的第j个子分组(从0到15),<<<s表示循环左移s位,则四种操作为:
FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<<<s)
GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<<<s)
HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<<<s)
II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<<s)
这四轮(64步)是:
第一轮
FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)
第二轮
GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)
第三轮
HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)
第四轮
II(a,b,c,d,M0,6,0xf4292244)
II(d,a,b,c,M7,10,0x432aff97)
II(c,d,a,b,M14,15,0xab9423a7)
II(b,c,d,a,M5,21,0xfc93a039)
II(a,b,c,d,M12,6,0x655b59c3)
II(d,a,b,c,M3,10,0x8f0ccc92)
II(c,d,a,b,M10,15,0xffeff47d)
II(b,c,d,a,M1,21,0x85845dd1)
II(a,b,c,d,M8,6,0x6fa87e4f)
II(d,a,b,c,M15,10,0xfe2ce6e0)
II(c,d,a,b,M6,15,0xa3014314)
II(b,c,d,a,M13,21,0x4e0811a1)
II(a,b,c,d,M4,6,0xf7537e82)
II(d,a,b,c,M11,10,0xbd3af235)
II(c,d,a,b,M2,15,0x2ad7d2bb)
II(b,c,d,a,M9,21,0xeb86d391)
常数ti可以如下选择:
在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。
(2的32次方)
所有这些完成之后,将A,B,C,D分别加上a,b,c,d。然后用下一分组数据继续运行算法,最后的输出是A,B,C和D的级联。
MD5的安全性
MD5相对MD4所作的改进:
1.增加了第四轮.
2.每一步均有唯一的加法常数.
3.为减弱第二轮中函数G的对称性从(X&Y)|(X&Z)|(Y&Z)变为(X&Z)|(Y&(~Z))
4.第一步加上了上一步的结果,这将引起更快的雪崩效应.
5.改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似.
6.近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应.各轮的位移量互不相同.