可视化
SherryGo
这个作者很懒,什么都没留下…
展开
-
influxdb常见操作
1、influxdb策略配置1.1、查看数据库的数据保存策略show retention policies on "prometheus"1.2、添加策略create retention policy "rp_name" on "prometheus" duration 1w replication 1 default;2.3、修改策略参考链接:Influxdb的retention policy_FreyFan的博客-CSDN博客注意:最好是在创建库的时候就设置好数据...原创 2022-03-25 14:53:41 · 4839 阅读 · 0 评论 -
grafana展示cpu使用率+influxdb
grafana版本:v8.3.4功能描述:grafana对influxdb数据进行可视化起初grafana使用dashboard ID8919进行prometheus数据进行展示,但是后来领导更新了需求,需要对数据进行二次开发然后进行展示。so将peometheus数据进行持久化到influxdb,然后就开始了influxdb数据展示的漫漫路。step1、将prometheus的cpu用户使用率等价替换为influxdb的查询语句prometheus查询语句如下:avg(rate(原创 2022-03-25 14:17:59 · 4239 阅读 · 0 评论 -
grafana的panel点击title,没有反应,没有出现edit选项
过了一个周末,周一上班发现之前创建的dashboard中的panel无法编辑,懵逼百度一圈,未找到解决方案遂查看官网帮助手册(Edit Panel),找到解决方案,我是通过第三种方式解决,即在panel的任意位置点击“e”,进入编辑状态...原创 2022-02-14 11:35:12 · 2217 阅读 · 1 评论 -
Python绘制接口调用拓扑图
导入包import networkx as nximport matplotlib.pyplot as plt处理数据# 读取csv文件,包含三列,siid, ciid, call_nodf_server = pd.read_csv("/tf/data/ai_ops/call_no_server.csv")weights =df_server_1["call_no"].to_list()绘制拓扑图g = nx.from_pandas_edgelist(df_server, '原创 2021-12-22 15:54:54 · 1219 阅读 · 0 评论 -
python数据可视化之plotly
1、安装!pip install Plotly2、导入包import plotly.express as pximport plotly.graph_objects as go3、使用通过help查看函数参数说明help(module_name.func_name) or __doc__ 方法看模块下特定函数的信息3.1 绘制折线图# 生成随机序列df1 = pd.DataFrame(np.random.rand(30, 4))# 绘制折线图px.line(d原创 2021-07-15 14:00:47 · 479 阅读 · 0 评论 -
CentOS安装basemap
1、2、安装gecd geos-3.6.2./configue //或选择安装的目录./configure --prefix=/root/env/geosmake make install原创 2021-06-15 16:55:05 · 192 阅读 · 0 评论