笔记:Learning Robust and Discriminative Subspace With Low-Rank Constraints

本文介绍了一种名为SRRS的监督学习方法,该方法结合低秩约束,从噪声数据中学习健壮且有区分性的子空间。SRRS利用标签信息增强子空间的判别能力,通过优化算法解决带有正交约束的秩最小化问题,适用于降维和分类任务。
摘要由CSDN通过智能技术生成

Li, S. and Y. Fu, Learning Robust and Discriminative Subspace With Low-Rank Constraints. IEEE Transactions on Neural Networks and Learning Systems, 2016. 27(11): p. 2160-2173.
本文是这篇 Trans. on NNLS 期刊论文的笔记,主要是对文中的理论方法进行展开详解。本人学术水平有限,文中如有错误之处,敬请指正。

摘要: 此文目标是学习健壮的、有区分的子空间,从噪声数据中。子空间学习大量用于提取有辨别力的特征,用于分类。此文提出的一个由判别力的子空间学习方法 supervised regularization-based robust subspace (SRRS) 方法,结合了 low-rank 约束。SRRS 找出噪声数据的 low-rank 表示,同时从恢复的数据中学习出有判别的子空间。监督约束函数使用了标签信息,增强了子空间的区分度。此方法是一个带约束的 rank 最小化问题,设计采用増广 Lagrange 乘子法解决。强调,此文学习了一个低维的子空间,并显示地结合了监督信息。

1 简介

简短地提及了多种子空间学习的方法,PCA,LDA,LPPs,NPE,LSDA,DLA。其基本思想是找到一个低维的投影,满足某些性质。PCA 是非监督的,使得投影后的样本的方差最大化,而 LPP 和 NPE 保留了样本的局部关系。有了类别标签之后,有监督的方法适合于分类。LDA 旨在找到一个投影,同时使样本的类间差异最大,而类内的差异最小。它提取了有判别性的特征用于分类。这些方法在干净的数据上是效果很理想,但是当有一定的噪声和变化之后,其效果就变差了。

Sparse representation (SR) 稀疏表达是经典的,被用于处理噪声数据的问题。其一些方法没有考虑到数据的全局结构,它们对噪声不鲁棒,而且不能够提取出干净的数据。

Low-rank 模型是 SR 的扩展,最近被关注,可以恢复出隐含的数据结构。当数据只属于一个类别时, RPCA 就通过最小化矩阵的秩,恢复出原始的数据。其变形有 LRR 和 Latent LRR 。low-rank 模型通常有很大的计算负担,一个分而治之 (divide and conquer)的思想 1 2,使它们能扩展到大数据集。

目前,很少有方法在 low-rank 学习中使用标签信息;传统的子空间学习方法有假设数据的分布,对一些噪声数据很敏感。此文平衡了监督子空间学习和 low-rank 模型用于分类的优点。

此文的主要贡献有:

  • 此文找出一个判别性的、强健的子空间,对噪声、姿势、光照变化不敏感,用于降维和分类。

  • 提出的 supervised regularization-based robust subspace (SRRS) 方法,从噪声的数据中学习到 low-rank representation,同时从干净的数据里学习一个判别性的子空间。

  • 为了提升分类的性能,自然加入了类别的标签信息,于目标函数的监督约束中。

这里写图片描述

2 相关工作

3 SRRS

3.1 模型构建

X 表示属于 c 类的 n 个样本, X=[x1,x2,,xn] 。有了一个完备基矩阵 A=[a1,a2,,am]Rd×m ,用基的线性组合表示样本

X=AZ(1)

其中 ZRm×n 是系数。为了找出一个鲁棒的子空间,首先定义投影的低维的样本 X~=PTX=PTAZ 。接着,依次结合低秩约束和监督约束来学习投影 P 。已知 n 个样本属于 c 个类别,有 nc ; 系数矩阵 Z 应该是 low-rank 的;换一句话说, Z 中的系数向量(属于同样的类别)应该是非常相关的。

因为标签信息对于分类是非常重要的,此文设计了一个监督约束项 f(P,Z) 基于 Fisher criterion 3 f(P,Z)=[tr(SB(PTAZ))/tr(SW(PTAZ))] ,其中 tr() 是迹函数, SB(), SW() 分别是类间散度和类内散度,

SB(PTAZ)SW(PTAZ)=SB(X~)=i=1cni(mim)(mim)T,=SW(X~)=i=1cj=1ni(x~ijmi)(x~ijmi)T,(2)(3)

其中 mi 是样本 X~ 中第 i 类的均值, m 是所有样本 X~ 的均值, x~ij 是所有数据中第 i 类中、第 j 个样本。通过 Fisher criterion,投影后的样本,不同类别之间间隔较远,相同类别的样本更接近。而且,Guo et al. 4 指出迹的比值问题可以转化为迹的差问题,所以重写 f¯(P,Z)=[tr(SW(PTAZ))tr(SB(PTAZ))] 。基于此,提出优化目标函数
minZ,P rank(Z)+λ1f¯(P,Z),  s.t. X=AZ,(4)

其中,参数 λ1 平衡上述两项的作用。

但是上述问题很难直接求解,因为 rank() 是非凸的。于是核范数(矩阵的奇异值之和)用于代替它,问题变成了

minZ,P ||Z||+λ1f¯(P,Z),  s.t. X=AZ.(5)

此文也注意到, f¯(P,Z) 关于 Z 也是非凸的,所以可以加入一个额外的项,保证凸性
f^(P,Z)=tr(SW)tr(SB)+η||PTAZ||2F .(6)

此文将上式转化为矩阵形式,(Appendix 理论上证明 f^(P,Z) 关于 Z 的凸性)
f^(P,Z)=||PTAZ(IHb)||2F||PTAZ(HbHt)||2F+η||PTAZ||2F ,(7)

其中 η 是权衡参数, ||||2F 是 Frobenius 范数, IRn×n 是单位矩阵, Hb,Ht 是两个常系数矩阵。具体地,当 xi,xj 属于同一类别时, Hb(i,j)=(1/nc) nc 是一个类别中样本的个数;否则,当 xi,xj 不属于同一类别时, Hb(i,j)=0 。而 Ht(i,j)=(1/n) 。现在监督约束项 f^(P,Z) 是关于 Z 凸的。

为了保证子空间的投影是正交的, PTP=I 约束也加入,其中 IRp×p 。现在写出新的优化目标函数

minZ,P s.t. ||Z||+λ1(||PTAZ(IHb)||2F||PTAZ(HbHt)||2F+η||PTAZ||2F) X=AZ, PTP=I .(8)

此目标函数关于 P 还不是凸的,因为正交约束 PTP=I 。此文采用 2,1 范数( ||E||2,1=nj=1di=1([E]ij)2 ),模拟数据中包含的噪声。它有如下 3 个性质:1) ||αE||2,1=|α|||E||2,1 ,其中 α 是一个实标量;2) 三角不等式, ||B+E||2,1||B||2,1+||E||2,1 ;3) 存在零向量,如果 ||E||2,1=0 ,那么 A=0 。它使得 E 中的某一些列为 0,这个假设在此文中就是某些数据被损坏,而另一些没有(数据矩阵 X 中,列代表样本的个数)。我们有了约束 X=AZ+E ,将目标函数重写
minZ,E,P s.t. ||Z||+λ2||E||2,1+λ1(||PTAZ(IHb)||2F||PTAZ(HbHt)||2F+η||PTAZ||2F) X=AZ+E, PTP=I .(9)

3.2 优化算法

此文采用经典的増广 Lagrange 乘子法 (inexact ALM algorithm) 5。为了求解方便,加入一个松弛变量 Z=J ,原问题转化为

minZ,E,P,J s.t. ||J||+λ2||E||2,1+λ1(||PTAZ(IHb)||2F||PTAZ(HbHt)||2F+η||PT<
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值