笔记:Sparse and Truncated Nuclear Norm Based Tensor Completion

Han, Z. F., Leung, C. S., Huang, L. T., & So, H. C. (2017). Sparse and Truncated Nuclear Norm Based Tensor Completion. Neural Processing Letters, 45(3), 729-743.
本文是这篇 Neural Processing Letter 期刊论文的笔记,主要是对文中的理论方法进行展开详解。本人学术水平有限,文中如有错误之处,敬请指正。

摘要: 张量(tensor)补全的主要问题是计算其秩(rank)。最近,一种张量核范数(tensor nuclear norm),等于所有张量的展开的矩阵的核范数的加权和,已经被提出来解决这个问题。然而,在此方法中, 所有的奇异值是被同时最小化的。所以,张量的秩并没有被很好地近似。另外,许多现有的方法都忽视了张量的结构信息。此文提出了一种张量补全的算法,基于张量截断核范数(truncated nuclear norm),其优于传统的核范数方法。而且,为了保持结构的信息,一个稀疏约束项,定义于变换域,也被添加到了目标函数中。实验结果表明此文的方法能胜过一些最先进的算法,在张量补全中。

1 简介

在信号处理和机器学习的应用中,比如图像去噪,图像分类和子空间分割,需要根据已知的数据来估丢失的元素。当然,没有对数据信息的先验知识,估计丢失的元素是一个病态的问题。所以,一些假设被广泛地采用。例如,可以使用输入数据的统计或结构的信息,来建立已知数据和未知数据的关系。然而,许多方法都只关注局部联系。

另一种办法是使用输入数据的全局结构信息。许多研究表明真实的信号都存在低维的空间之中。比如,许多的自然图像都包含一些纹理区域。这些纹理的秩通常都很小。所以,许多的矩阵补全方法都研究最小化矩阵的秩。不幸的是,矩阵的秩并不是一个凸函数,意味着低秩最小化不能被有效地求解。

最近,研究表明,核范数,一个凸近似,适合低秩最小化求解。另外,核范数最小化可以通过一些数学方法有效地求解。然而,如 1 所述,使用核范数的最大限制是其不能很好地近似矩阵的秩,因为在优化过程中,所有的奇异值都被同时最小化了。在 2 中,矩阵截断核范数(truncated nunclear norm, MTNN)被提出。不像之前的核范数方法,最小化所有奇异值的和,该 MTNN 方法关注一部分最小的奇异值。经验性的研究表明此 MTNN 方法更优于其他矩阵核范数方法。

最近,作为矩阵补全的扩展,低秩张量补全越来越受关注。Liu et al. 3 首次定义了张量核范数,将矩阵补全扩展到张量补全中。另外,他们构建了两种算法,快速低秩张量补全(FaLRTC)和高精度低秩张量补全(HaLRTC)。由于张量核范数的概念是基于矩阵核范数,所以张量的秩也并没有被很好地近似。另外,这两种算法并没有考虑张量数据地结构信息。

此文定义了张量截断核范数(TTNN)方法。之后,将其应用到张量补全问题中。为了更好地提升性能,此文将 1 范数约束项加入到目标函数中,保留数据片之间的平滑性质。约束项等于多维离散余弦变换系数的和。

2 背景

2.1 符号

此文中,矩阵用大写加粗字母表示( X,Y ),其元素加下标( Xij )。Frobenius 范数定义为 ||X||F=(ij|Xij|2)12 。矩阵的内积定义为 X,Y:=ijXijYij 。张量定义为书法体的大写加粗字母( X,Y )。一个 N 模的张量,或 N 阶的张量,表示为 XRI1×I2××IN ,其中 Im 表示第 m 个维度的大小。张量中的一个元素表示为 Xi1iN 。模 N 矩阵化一个张量 X 的结果是一个矩阵,表示为 X(n) 。其过程是将除 in 之外的索引全部线性化。矩阵 X(n) 的大小为 In×Nk=1,knIk 。在解包过程中,一个元素 Xi1iN 对应着 X(n) 的位置 (in,j) ,其中

j=1+k=1,knN(ik1)Jk  with  Jk=m=1,mnk1Im.

其逆操作打包定义为 Fold(n)(X(n)):=X 。张量 X 的 Frobenius 范数定义为 ||X||F:=(i1,,iN|Xi1iN|2)12 ,类似地,两个相同大小的 tensor 的内积定义为 X,Y:=i1,,iNXi1iNYi1iN

2.2 矩阵补全

首先回顾以下矩阵补全的概念。令 MRm×n 为一个低秩的不完整的矩阵。令 Ω 为已知数据元素的集合,而 Ωc 是其补集。矩阵补全可以用如下的优化问题表示:

minX s.t.  rank(X)PΩ(X)=PΩ(M),(1)

其中 PΩ() 是映射操作,给出如下
(PΩ(M))ij={ Mij,0,(i,j)Ω,(i,j)Ωc.

在优化问题中 (1) ,目标是估计 X 中的缺失的元素,使其的秩尽可能的小。一般的,矩阵的范数最小化问题是一个 NP-hard 问题。

在文献 4 中,介绍了矩阵 XRm×n 的核范数,给出如下

||X||=i=1min(m,n)σi,

其中 σi 是矩阵 X 是第 i 个最大的奇异值。使用矩阵核范数的概念,矩阵补全的问题 (1) 就转变为
minX s.t.  ||X||PΩ(X)=PΩ(M).(2)

在基于矩阵核范数的方法中,所有的奇异值都是同时被最小化的。所以,矩阵的秩没有被很好地近似 5 。为了解决这个问题,MTNN 方法被提出了。其等价于 min(m,n)r 个最小的奇异值之和,即
||X||r=i=r+1min(m,n)σi.

接着,优化问题 (2) 转变为

minX s.t.  ||X||rPΩ(X)=PΩ(M).(3)

根据文献 [5] 所述,该优化问题 (3) 可以改写为
minX s.t.  ||X||maxAAT=I,BBT=Itr(AXBT)PΩ(X)=PΩ(M),(4)

其中 ARr×m BRr×n I 是一个单位矩阵。在文献 [5] 中,作者提出了算法使用交替乘子法(alternating direction method of multipliers, ADMM)求解优化问题。基本思想是设置初始值 X(1)=PΩ(M) 。在第 t 次迭代过程中,先固定 X(t) 和进行奇异值分解(SVD)于 Xt ,即 X(t)=UΣVT ,其中 U=[u1,,um]Rm×m ΣRm×n V=[v1,,vn]Rn×n 。令 A(t)=[u1,,ur]T B(t)=[v1,,vr]T 。之后,固定 A(t) B(t)
  • 8
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值