Hands-On Time Series Analysis with R : Perform time series analysis and forecasting using R

1.Introduction to Time Series Analysis and R

2.Working with Date and Time Objects  
3.The Time Series Object

4.Working with zoo and xts Objects 
5.Decomposition of Time Series Data
    5.1 The moving average function
        5.1.1 The rolling window structure
        5.1.2 The MA attributes
        5.1.3 The simple moving average
    5.2 The time series components

    5.3 The additive versus the multiplicative model
    5.4 The decomposition of time series
    5.5 Seasonal adjustment
6.Seasonality Analysis
    6.1 Seasonality types
    6.2 Seasonal analysis with descriptive statistics
    6.3 Structural tools for seasonal analysis
7.Correlation Analysis
    7.1 Correlation between two variables
    7.2 Lags analysis
    7.3 The autocorrelation function
    7.4 The partial autocorrelation function 
    7.5 Lag plots

    7.6 Causality analysis

8.Forecasting Strategies
    8.1 The forecasting workflow
    8.2 Training approaches
    8.3 Finalizing the forecast
    8.4 Handling forecast uncertainty
9.Forecasting with Linear Regression
    9.1 The linear regression
    9.2 Forecasting with linear regression
    9.3 Forecasting a series with multiseasonality components

10.Forecasting with Exponential Smoothing Models
    Forecasting with moving average models
    Forecasting with exponential smoothing
        Simple exponential smoothing model(SES)
        Holt method
        Holt-Winters model

11.Forecasting with ARIMA Models
    The stationary process
    The AR process

    The moving average process
    The ARMA model
    The ARIMA model
    The seasonal ARIMA model
    Linear regression with ARIMA errors
        Violation of white noise assumption
        Modeling the residuals with the ARIMA model

12.Forecasting with Machine Learning Models
    12.1 Why and when should we use machine learning?


    12.2 Why h2o?
    12.3 Forecasting monthly vehicle sales in the US a case study
        Exploratory analysis of the USVSales series
        Feature engineering
        Training, testing, and model evaluation
        Model benchmark
        Training an ML model
        Forecasting with the Random Forest model

        Forecasting with the GBM model
        Forecasting with the AutoML model
        Selecting the final model

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值