第一节 映射与函数
映射
1.映射的概念
定义: 设X,Y是两个非空集合,如果存在一个法则f,使得对X中的每个元素x,按法则f,在Y中都有唯一确定的元素y与之对应,那么称f为从X到Y的映射,记作
f=X→Y
\ f = X→Y\,
f=X→Y
其中y称为元素x(在映射f下)的像,并记作f(x),即
y=f(x)
\ y = f(x)\,
y=f(x)
而元素x称为元素y(在映射f下的一个原像); 集合X称为映射f的定义域,记作Df,即Df=X; X中所有元素的像组成的集合称为
原创
2021-03-24 09:48:13 ·
273 阅读 ·
0 评论