题目:
设R={r1,r2...rn}是要进行排列的n个元素,其中的元素可能相同,试设计并实现一个算法,列出R的所有不同排列。
基本思想:
在全排序思想的基础上加上去重环节
①全排序:
简单讲就是:
n个数的排列,固定前面1个数,将n-1个数排列;
n-1个数的排列固定前面1个数,将后面n-2个数排列;
......
不断递归直到最后一个数,输出;
往回走时两个数:交换
.......
这样任何一个数都会与其他数交换位置,结果组合数是n!
②去重
①中得到的每个结果都会与前面已存储的结果进行对比,一有相同则跳过,都没有相同才存储。
package algorism2;
import java.util.Arrays;
import java.util.Scanner;
public class RankWeave {
static int total=0; //已有存储的结果数
public static void swap(String[] a,int i,int j){ //交换数组中下标i和j的数
String s=a[i];
a[i]=a[j];
a[j]=s;
}
public static void Deduplicate(String[]ss, String[]s){ //去重
for(int i=0;i<=RankWeave.total-1;i++){ //已有结果中已经有相同组合则跳出不用存储
if (ss[i].equals(Arrays.toString(s)))return;
}
ss[total]=Arrays.toString(s);
total+=1;
}
public static void Permutation(String[] s,int m,String[]ss){ //去重全排序
if(s.length==m){ //最后一个数可以输出结果了
//System.out.println(Arrays.toString(s));
Deduplicate(ss,s); //去重
return;
}
else{
for(int i=m;i<s.length;i++){
RankWeave.swap(s,m, i); //交换开头
RankWeave.Permutation(s,m+1,ss); //递归
RankWeave.swap(s,m, i);//为避免重复排序,每个数打头结束后都恢复初始排序
}
}
}
public static void main(String args[]){
String[] a;
int m=1;
Scanner sc=new Scanner(System.in);
System.out.println("请输入组合\n");
//sc.nextLine();
//nextInt())等等这些 之后,sc.nextLine()截取上面的一个回车操作
String str=sc.nextLine();//读取字符串
a=str.split("");//分解为数组
for(int i=1;i<=a.length;i++){ //算出最大可能组合数n!
m*=i;
}
String[] ss=new String[m];//存储结果的数组
RankWeave.Permutation(a,0,ss); //去重全排列
for(int i=0;i<RankWeave.total;i++){ //输出结果数组
System.out.println(ss[i]);
}
}
}