深度学习之CNN实例分析

学习笔记


前言

本次案例是基于keras库实现的狗分类模型

所用版本
python 3.7
keras 2.6.0


一、数据处理

1.所需库

import os  # 读取文件名
import cv2 as cv  # 读取数据集图片
from sklearn.preprocessing import LabelEncoder  # 标签张量化
from sklearn.model_selection import train_test_split  # 划分数据集
from keras.utils.np_utils import to_categorical

2.处理步骤

本次案例中使用的数据集来自kaggle的stanford-dogs-dataset数据集
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset
有现成数据集的原因,大致分为两步读取数据张量化划分数据集

读取

本次案例读取采用python基本库os,和opencv库完成

# 读取文件目录名
os.listdir('input/stanford_dogs_date/images/Images')
dir = 'input/stanford_dogs_date/images/Images/'
chihuahua_dir = dir + 'n02085620-Chihuahua'  # 吉娃娃
japanese_spaniel_dir = dir + 'n02085782-Japanese_spaniel'  # 日本种
maltese_dog_dir = dir + 'n02085936-Maltese_dog'  # 马尔济斯犬
pekinese_dir = dir + 'n02086079-Pekinese'  # 北京狮子狗
shih_Tzu_dir = dir + 'n02086240-Shih-Tzu'  # 西施犬
blenheim_spaniel_dir = dir + 'n02086646-Blenheim_spaniel'  # 英国可卡犬
papillon_dir = dir + 'n02086910-papillon'  # 蝴蝶犬
toy_terrier_dir = dir + 'n02087046-toy_terrier'  # 玩具猎狐梗
afghan_hound_dir = dir + 'n02088094-Afghan_hound'  # 阿富汗猎犬
basset_dir = dir + 'n02088238-basset'  # 巴吉度猎犬


# 将图片和标签存入X_data和y_lable数据集中
X_data = []
y_label = []
imgsize = 150
def tarin_data(label, data_dir):
    for img_name in os.listdir(data_dir):  # 遍历单个狗狗种类文件夹里所有照片的名字
        path = os.path.join(data_dir, img_name)  # 生成照片的路径
        
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值