hdu 2665 划分树裸题

昨天还觉得划分树很难,看了一眼别人的代码觉得好长然后觉得很没法下手!今天早上起床还是很耐心的研读了大牛的代码,哈哈,原来也不过如此吗!线段树和归并排序的结合,建议大家以后遇到不会的题一定要有耐心,不然就真的学不会了!

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<climits>
#include<map>
using namespace std;

#define rep(i,n) for(int i=0; i<n; i++)
#define repf(i,n,m) for(int i=(n); i<=(m); ++i)
#define repd(i,n,m) for(int i=(n); i>=(m); --i) 
#define ll long long
#define arc(a) ((a)*(a))
#define inf 100000
#define exp 0.000001
#define N 100005
#define M 20
int a[N];
int aleft[M][N];
int tree[M][N];
int n,m;

void bulidtree(int l,int r,int dep)
{
	if(l==r)
	{
		tree[dep+1][l]=tree[dep][l];return ;
	}
	int mid=(l+r)/2;
	int lsame=l-1;
	int x=a[mid];
	repf(i,l,r) if(tree[dep][i]<x) lsame++;
    int newl=l,newr=mid+1;
	repf(i,l,r)
	{
		if(tree[dep][i]<x) tree[dep+1][newl++]=tree[dep][i];
		else if(tree[dep][i]==x && lsame<mid)
			tree[dep+1][newl++]=tree[dep][i],lsame++;
		else tree[dep+1][newr++]=tree[dep][i];
		aleft[dep][i]=aleft[dep][l-1]+newl-l;
	}
	bulidtree(l,mid,dep+1);
	bulidtree(mid+1,r,dep+1);
}
int query(int L,int R,int l,int r,int dep,int k)
{
	if(l==r)
		return tree[dep][l];
	int mid=(L+R)/2;
	int s=aleft[dep][r]-aleft[dep][l-1];
	int ss=aleft[dep][l-1]-aleft[dep][L-1];
	int e=r-l+1-s;
	int ee=l-L-ss;
	if(s>=k)
	{
		int newl=L+ss;
		int newr=newl+s-1;
		return query(L,mid,newl,newr,dep+1,k);
	}
	else
	{
		int newl=mid+ee+1;
		int newr=newl+e-1;
		return query(mid+1,R,newl,newr,dep+1,k-s);
	}
}
int main()
{ 
	int test;
	scanf("%d",&test);
	while(test--)
	{
		scanf("%d%d",&n,&m);
		repf(i,1,n) scanf("%d",&tree[0][i]),a[i]=tree[0][i];
		sort(a+1,a+n+1);
		bulidtree(1,n,0);
		int l,r,k;
		repf(i,1,m)
		{
			scanf("%d%d%d",&l,&r,&k);
			printf("%d\n",query(1,n,l,r,0,k));
		}
	}
   return 0;
}
  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淡定的小Y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值