泊松(Poisson)分布是二项分布的逼近,当二项分布(
X
∼
b
(
n
,
p
)
X\sim b(n,p)
X∼b(n,p))的n值越大越接近,极限就是泊松分布(
X
∼
π
(
λ
)
X\sim\pi(\lambda)
X∼π(λ))。也就是:
lim
n
→
∞
(
n
k
)
p
n
k
(
1
−
p
n
)
n
−
k
=
λ
k
e
−
λ
k
!
=
P
(
X
=
k
)
,
n
p
n
=
λ
\large{\lim_{n\to\infty}\binom{n}{k}p_n^k(1-p_n)^{n-k}=\frac{\lambda^ke^{-\lambda}}{k!}=P(X=k),\ np_n=\lambda}
n→∞lim(kn)pnk(1−pn)n−k=k!λke−λ=P(X=k), npn=λ
伽玛(gamma)分布是泊松分布在实数上的扩展。公式如下:
∫
0
∞
x
α
−
1
e
−
x
d
x
Γ
(
α
)
=
1
=
>
G
a
m
m
a
(
t
∣
α
)
=
t
α
−
1
e
−
t
Γ
(
α
)
\large{\int_0^\infty{\frac{x^{\alpha-1}e^{-x}dx}{\Gamma(\alpha)}=1\ =>\ } Gamma(t|\alpha)=\frac{t^{\alpha-1}e^{-t}}{\Gamma(\alpha)}}
∫0∞Γ(α)xα−1e−xdx=1 => Gamma(t∣α)=Γ(α)tα−1e−t
其中,伽玛(Gamma)如下:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
=
>
Γ
(
x
+
1
)
=
x
Γ
(
x
)
\large{\Gamma(x)=\int_0^\infty{t^{x-1}e^{-t}dt}\ =>\ \Gamma(x+1)=x\Gamma(x)}
Γ(x)=∫0∞tx−1e−tdt => Γ(x+1)=xΓ(x)
该函数在整数上正好是阶乘函数,伽玛函数在复数也适用。
泊松分布与伽马分布
最新推荐文章于 2023-10-10 20:53:13 发布
文章探讨了泊松分布如何作为二项分布n值趋近于无穷大时的极限,以及伽玛分布如何作为泊松分布在实数范围的扩展,涉及概率密度函数和伽玛函数的基本性质。
摘要由CSDN通过智能技术生成