深度学习
xuguokun1986
这个作者很懒,什么都没留下…
展开
-
卷积神经网络CNN原理详解(一)——基本原理
https://www.cnblogs.com/charlotte77/p/7759802.html转载 2019-02-28 19:00:51 · 1261 阅读 · 0 评论 -
神经网络的优化(2)----优化器、自适应学习率:Adagrad、RMSProp、Momentum、Adam
https://blog.csdn.net/pengchengliu/article/details/89362271转载 2019-07-16 08:31:18 · 786 阅读 · 0 评论 -
深入解析TensorFlow中滑动平均模型与代码实现
https://blog.csdn.net/m0_38106113/article/details/81542863转载 2019-03-31 20:36:43 · 176 阅读 · 0 评论 -
深度学习(二十二)Dropout浅层理解与实现
原文地址:http://blog.csdn.net/hjimce/article/details/50413257作者:hjimce一、相关工作本来今天是要搞《Maxout Networks》和《Network In Network》的,结果发现maxout和dropout有点类似,所以就对dropout做一下相关的总结,了解一下其代码层面的实现。Dropout是2...转载 2019-03-31 15:10:26 · 213 阅读 · 0 评论 -
正则化为什么能防止过拟合
1. 概述在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不工作。image.png为了防止overfitting,可以用的方法...转载 2019-03-31 14:49:37 · 383 阅读 · 0 评论 -
理解滑动平均(exponential moving average)
1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以用来估计变量的局部均值,使得变量的更新与一段时间内的历史取值有关。 变量vv在tt时刻记为vtvt,θtθt为变量vv在tt时刻的取值,即在不使用滑动平均模型时vt=θtvt=θt,在使用...转载 2019-03-08 09:02:51 · 16564 阅读 · 2 评论 -
深度学习AlexNet模型详细分析
https://blog.csdn.net/Rasin_Wu/article/details/80017920转载 2019-03-03 20:23:48 · 401 阅读 · 0 评论 -
深度学习之自编码器AutoEncoder
https://blog.csdn.net/marsjhao/article/details/73480859转载 2019-03-08 16:38:18 · 225 阅读 · 0 评论 -
深度学习的局部响应归一化LRN(Local Response Normalization)理解
https://blog.csdn.net/yangdashi888/article/details/77918311转载 2019-03-04 21:45:19 · 751 阅读 · 0 评论 -
【DL碎片5】深度学习中的正则化(Regularization))
深度学习中的正则化(Regularization)一、Bias(偏差) & Variance(方差)在机器学习中,这两个名词经常让我们傻傻分不清。我们不妨用案例来看看怎么区分。假设我们正在做一个分类器,分别在训练集和验证集上测试,以下为四种可能的情况:四种情况可见①、④两种情况的训练集误差都很小,接近optimal error,这种就称为low bias。说明训练的...转载 2019-07-16 22:01:37 · 156 阅读 · 0 评论