在归并排序的迭代算法中,可以把输入序列看成是个n个已排序序列,其中每个序列的长度为1,将这些序列两两归并就得到了 n/2个长度为2的序列(如果n为奇数,则有一个序列长度为1),然后对这n/2这个序列进行两两归并,依次类推,直到只剩下一个序列为止。
归并排序是在输入记录上执行若干遍归并,其中第一遍归并的是长度为1的子序列,第二遍归并的是长度为2的子序列,而第i遍归并的是长度为
2i−1
的子序列,因此,总的归并遍数为[
log2
n],由函数merge可知,可以在线性时间内归并两个已排序序列,这就意味着每遍归并的时间开销为O(n),由于总共要归并[
log2
n]遍,所以总的计算时间是O(
nlogn
).
设输入序列为(26,5,77,1,61,11,59,15,48,19),则归并过程为:
代码实现:
#include <iostream>
#include<stdio.h>
#include<algorithm>
#define MAX_SIZE 100
typedef struct
{
int key;
}element;
element list[MAX_SIZE];
using namespace std;
//归并排序函数
void merge(element list[],element sorted[],int i,int m,int n)
{
int j,k,t;
//后半部分的起始索引
j=m+1;
// 前半部分的起始索引
k=i;
while(i<=m&&j<=n)
{
if(list[i].key<=list[i].key)
sorted[k++]=list[i++];
else
sorted[k++]=list[j++];
}
if(i>m)
//加入剩余的后半部分
for(t=j;t<=n;t++)
sorted[k+t-j]=list[t];
else
//加入剩余的前半部分
for(t=i;t<=m;t++)
sorted[k+t-i]=list[t];
}
//单遍归并的函数
void merge_pass(element list[],element sorted[],int n,int length)
{
int i,j;
//以length长度为一组,每两组又排序合并为一组
for(i=0;i<=n-2*length;i+=2*length)
merge(list,sorted,i,i+length-1,i+2*length-1);
//判断最后是否只有一组还是两组
if(i+length<n)
//合并最后两组
merge(list,sorted,i,i+length-1,n-1);
else
//加入剩下的最后一组
for(j=i;j<n;j++)
sorted[j]=list[j];
}
//分组排序归并
void merge_sort(element list[],int n)
{
int length=1;
element extra[MAX_SIZE];
while(length<n)
{
merge_pass(list,extra,n,length);
length*=2;
merge_pass(extra,list,n,length);
length*=2;
}
}