徐海蛟:向量X的归一化及其Matlab简单示例

本文由徐海蛟博士分享,介绍了在Matlab中如何进行向量的L1和L2范数归一化。通过示例代码展示了如何对矩阵的每一行进行归一化处理,提高数据处理效率。
摘要由CSDN通过智能技术生成

徐海蛟博士


归一化是要把需要处理的数据经过处理后限制在一定范围内,例如:[-1,1]或[0,1]。归一化是为了后续数据处理的方便,也使得算法程序收敛加快。
在Matlab里面,归一化的方法共有3种:
(1)mapminmax % 范围映射
(2)mapstd % 均值与偏差
(3)自定义函数


在数据预处理过程中,对数据集按行或者按列(统一记为向量X)进行L1或者L2范数归一化是一种常见的处理方式。
对于向量X(x1,x2,...,xn),记norm(X)为向量X的范数,那么,X的L1范数为xi绝对值之和,L2范数为xi的平方和,而其Lp范数:向量X各个元素xi绝对值的p次方求和后再求1/p次方。这里,i = 1,2,...,n。则X归一化后的向量是X'(x1',x2',...,xn'), xi' = xi/norm(X)。


童鞋们,可以跟着徐海蛟老师写出最简单的matlab示例代码:
%% 徐海蛟博士: L1范数-行归一化
A = [1 2 3; 4 5 6];
[m n] = size(A);
% 归一化
for i = 1:m
A(i,:) = A(i,:)/norm(A(i,:),1);
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值