redis、memcache、mongoDB 的对比


关于 redis、memcache、mongoDB 的对比

from:http://yang.u85.us/memcache_redis_mongodb.pdf

从以下几个维度,对 redis、memcache、mongoDB 做了对比。
1、性能
都比较高,性能对我们来说应该都不是瓶颈。
总体来讲,TPS 方面 redis 和 memcache 差不多,要大于 mongodb。
2、操作的便利性
memcache 数据结构单一。(key-value)
redis 丰富一些,数据操作方面,redis 更好一些,较少的网络 IO 次数,同时还提供 list,set,
hash 等数据结构的存储。
mongodb 支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。
3、内存空间的大小和数据量的大小
redis 在 2.0 版本后增加了自己的 VM 特性,突破物理内存的限制;可以对 key value 设置过
期时间(类似 memcache)
memcache 可以修改最大可用内存,采用 LRU 算法。Memcached 代理软件 magent,比如建立
10 台 4G 的 Memcache 集群,就相当于有了 40G。 magent -s 10.1.2.1 -s 10.1.2.2:11211 -b
10.1.2.3:14000 mongoDB 适合大数据量的存储,依赖操作系统 VM 做内存管理,吃内存也比较厉害,服务
不要和别的服务在一起。
4、可用性(单点问题)
对于单点问题,
redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整
个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动 sharding,需要依赖程序设定一致 hash 机制。
一种替代方案是,不用 redis 本身的复制机制,采用自己做主动复制(多份存储),或者改成
增量复制的方式(需要自己实现),一致性问题和性能的权衡
Memcache 本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的 hash 或者环
状的算法,解决单点故障引起的抖动问题。
mongoDB 支持 master-slave,replicaset(内部采用 paxos 选举算法,自动故障恢复),auto sharding 机制,对客户端屏蔽了故障转移和切分机制。
5、可靠性(持久化)
对于数据持久化和数据恢复,
redis 支持(快照、AOF):依赖快照进行持久化,aof 增强了可靠性的同时,对性能有所影

memcache 不支持,通常用在做缓存,提升性能;
MongoDB 从 1.8 版本开始采用 binlog 方式支持持久化的可靠性
6、数据一致性(事务支持)
Memcache 在并发场景下,用 cas 保证一致性redis 事务支持比较弱,只能保证事务中的每个操作连续执行
mongoDB 不支持事务
7、数据分析
mongoDB 内置了数据分析的功能(mapreduce),其他不支持
8、应用场景
redis:数据量较小的更性能操作和运算上
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写
少,对于数据量比较大,可以采用 sharding)
MongoDB:主要解决海量数据的访问效率问题。
表格比较:
memcache redis 类型 内存数据库 内存数据库
数据类型 在定义 value 时就要固定数据类型 不需要
有字符串,链表,集 合和有序集合
虚拟内存 不支持 支持
过期策略 支持 支持
分布式 magent master-slave,一主一从或一主多从
存储数据安全 不支持 使用 save 存储到 dump.rdb 中
灾难恢复 不支持 append only file(aof)用于数据恢复
性能
1、类型——memcache 和 redis 都是将数据存放在内存,所以是内存数据库。当然,memcache 也可用于缓存其他东西,例如图片等等。
2、 数据类型——Memcache 在添加数据时就要指定数据的字节长度,而 redis 不需要。
3、 虚拟内存——当物理内存用完时,可以将一些很久没用到的 value 交换到磁盘。
4、 过期策略——memcache 在 set 时就指定,例如 set key1 0 0 8,即永不过期。Redis 可以通
过例如 expire 设定,例如 expire name 10。
5、 分布式——设定 memcache 集群,利用 magent 做一主多从;redis 可以做一主多从。都可
以一主一从。
6、 存储数据安全——memcache 断电就断了,数据没了;redis 可以定期 save 到磁盘。
7、 灾难恢复——memcache 同上,redis 丢了后可以通过 aof 恢复。
Memecache 端口 11211
yum -y install memcached
yum -y install php-pecl-memcache
/etc/init.d/memcached start memcached -d -p 11211 -u memcached -m 64 -c 1024 -P /var/run/memcached/memcached.pid
-d 启动一个守护进程
-p 端口
-m 分配的内存是 M
-c 最大运行并发数-P memcache 的 pid
//0 压缩(是否 MEMCACHE_COMPRESSED) 30 秒失效时间
//delete 5 是 timeout <?php
$memcache = new Memcache; $memcache -> connect('127.0.0.1', 11211); $memcache -> set('name','yang',0,30);
if(!$memcache->add('name','susan',0, 30)) {
//echo 'susan is exist'; }$memcache -> replace('name', 'lion', 0, 300); echo $memcache -> get('name');
//$memcache -> delete('name', 5);
printf "stats\r\n" | nc 127.0.0.1 11211
telnet localhost 11211 stats quit 退出
Redis 的配置文件 端口 6379
/etc/redis.conf 启动 Redis
redis-server /etc/redis.conf 插入一个值
redis-cli set test "phper.yang" 获取键值
redis-cli get test 关闭 Redis
redis-cli shutdown 关闭所有
redis-cli -p 6379 shutdown <?php
$redis=new Redis(); $redis->connect('127.0.0.1',6379); $redis->set('test', 'Hello World'); echo $redis->get('test'); Mongodb
apt-get install mongo mongo 可以进入 shell 命令行
pecl install mongo Mongodb 类似 phpmyadmin 操作平台 RockMongo

https://www.cnblogs.com/94cool/p/3247307.html


先说我自己用的情况:

最先用的memcache ,用于键值对关系的服务器端缓存,用于存储一些常用的不是很大,但需要快速反应的数据,然后,在另一个地方,要用到redis,然后就去研究了下redis. 一看,显示自己安装了php扩展,因为有服务器上的redis服务端,自己本地就没有安装,其实用法和memcache基本一样,可能就是几个参数有所不同。当然 它们缓存的效果也不一样,具体的哪里不一样,一下就是一些资料,和自己的总结

1、 Redis和Memcache都是将数据存放在内存中,都是内存数据库。不过memcache还可用于缓存其他东西,例如图片、视频等等。
2、 数据类型--Memcache在添加数据时就要指定数据的字节长度,例如:
set key3 0 0 8
lxsymcto
STORED
而redis不需要,如:redis 127.0.0.1:6379>set key2 "lxsymblog"
OK
redis 127.0.0.1:6379>get key2
"lxsymblog"
3、虚拟内存--Redis当物理内存用完时,可以将一些很久没用到的value 交换到磁盘
4、过期策略--memcache在set时就指定,例如set key1 0 0 8,即永不过期。Redis可以通过例如expire 设定,例如expire name 10
5、分布式--设定memcache集群,利用magent做一主多从;redis可以做一主多从。都可以一主一从
6、存储数据安全--memcache挂掉后,数据没了;redis可以定期保存到磁盘(持久化)
7、灾难恢复--memcache挂掉后,数据不可恢复; redis数据丢失后可以通过aof恢复

 

从以下几个维度,对redismemcachemongoDB 做了对比,欢迎拍砖

1、性能

都比较高,性能对我们来说应该都不是瓶颈

总体来讲,TPS方面redismemcache差不多,要大于mongodb

2、操作的便利性

memcache数据结构单一

redis丰富一些,数据操作方面,redis更好一些,较少的网络IO次数

mongodb支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富

3、内存空间的大小和数据量的大小

redis2.0版本后增加了自己的VM特性,突破物理内存的限制;可以对key value设置过期时间(类似memcache

memcache可以修改最大可用内存,采用LRU算法

mongoDB适合大数据量的存储,依赖操作系统VM做内存管理,吃内存也比较厉害,服务不要和别的服务在一起

4、可用性(单点问题)

对于单点问题,

redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制,因性能和效率问题,

所以单点问题比较复杂;不支持自动sharding,需要依赖程序设定一致hash 机制。

一种替代方案是,不用redis本身的复制机制,采用自己做主动复制(多份存储),或者改成增量复制的方式(需要自己实现),一致性问题和性能的权衡

Memcache本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的hash或者环状的算法,解决单点故障引起的抖动问题。

mongoDB支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制。

5可靠性(持久化)

对于数据持久化和数据恢复,

redis支持(快照、AOF):依赖快照进行持久化,aof增强了可靠性的同时,对性能有所影响

memcache不支持,通常用在做缓存,提升性能;

MongoDB1.8版本开始采用binlog方式支持持久化的可靠性

6、数据一致性(事务支持)

Memcache 在并发场景下,用cas保证一致性

redis事务支持比较弱,只能保证事务中的每个操作连续执行

mongoDB不支持事务

7、数据分析

mongoDB内置了数据分析的功能(mapreduce),其他不支持

8、应用场景

redis:数据量较小的更性能操作和运算上

memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写少,对于数据量比较大,可以采用sharding

MongoDB:主要解决海量数据的访问效率问题

 

 

 

最近一直在研究key-value的存储,简单记一下感受。。一些memcache和redis的安装和使用就不赘述啦。只简单说说两种方案的差别。一些感想和测试结果未必足够能说明问题,有什么不妥请大家指正。因为这两天在学习的过程发现一直在更正自己认识的缺陷,每天都会否定前一天的想法。。好了,费话少说。

  经过对50万个数据存储的研究发现:

  每秒单条指令执行量    

memcache 约3万次

  redis 约1万次

而且,memcache的一大优点是可以通过一个函数直接设置过期时间,而redis需要两个函数才可以既设置了键值对又设置过期时间,也就是redis在这点上效率变成了原来的一半,即5千次,这对于大部分需求来说,有点太慢了。

  memcache的测试代码如下:

Php代码  收藏代码
  1. <?php  
  2. $mem = new Memcache;  
  3. $mem->connect("127.0.0.1", 11211);  
  4. $time_start = microtime_float();  
  5. //保存数据  
  6. for($i = 0; $i < 100000; $i ++){  
  7. $mem->set("key$i",$i,0,3);  
  8. }  
  9. $time_end = microtime_float();  
  10. $run_time = $time_end - $time_start;  
  11. echo "用时 $run_time 秒\n";  
  12. function microtime_float(){  
  13. list($usec$sec) = explode(" ", microtime());  
  14. return ((float)$usec + (float)$sec);  
  15. }  
  16. ?>  

 

redis的测试代码如下:redis1.php 此代码大概需要10秒左右

Php代码  收藏代码
  1. <?php  
  2. //连接  
  3. $redis = new Redis();  
  4. $redis->connect('127.0.0.1', 6379);  
  5. $time_start = microtime_float();  
  6. //保存数据  
  7. for($i = 0; $i < 100000; $i ++){  
  8. $redis->sadd("key$i",$i);  
  9. }  
  10. $time_end = microtime_float();  
  11. $run_time = $time_end - $time_start;  
  12. echo "用时 $run_time 秒\n";  
  13. //关闭连接  
  14. $redis->close();  
  15. function microtime_float(){  
  16. list($usec$sec) = explode(" ", microtime());  
  17. return ((float)$usec + (float)$sec);  
  18. }  
  19. ?>  

 

  如果需要在设置键值的同时设置过期时间,大概执行需要20秒左右,测试代码如下:redis2.php

Php代码  收藏代码
  1. <?php  
  2. //连接  
  3. $redis = new Redis();  
  4. $redis->connect('127.0.0.1', 6379);  
  5. $time_start = microtime_float();  
  6. //保存数据  
  7. for($i = 0; $i < 100000; $i ++){  
  8. $redis->sadd("key$i",$i);  
  9. $redis->expire("key$i",3);  
  10. }  
  11. $time_end = microtime_float();  
  12. $run_time = $time_end - $time_start;  
  13. echo "用时 $run_time 秒\n";  
  14. //关闭连接  
  15. $redis->close();  
  16. function microtime_float(){  
  17. list($usec$sec) = explode(" ", microtime());  
  18. return ((float)$usec + (float)$sec);  
  19. }  
  20. ?>  

 

  后来在网上发现redis有一个神奇的功能叫事务,通过multi原子性的将一段代码块依次执行,从而达到一个完整功能模块的执行。不幸的是,通过测试发现,采用multi方式执行代码时并没有减少请求次数,相反在执行multi指令和exec指令时都要发送请求,从而将运行时间变成了原来的四倍,即四条指令的运行时间。测试代码如下:redis3.php

Php代码  收藏代码
  1. <?php  
  2. //连接  
  3. $redis = new Redis();  
  4. $redis->connect('127.0.0.1', 6379);  
  5. $time_start = microtime_float();  
  6. //保存数据  
  7. for($i = 0; $i < 100000; $i ++){  
  8. $redis->multi();  
  9. $redis->sadd("key$i",$i);  
  10. $redis->expire("key$i",3);  
  11. $redis->exec();  
  12. }  
  13. $time_end = microtime_float();  
  14. $run_time = $time_end - $time_start;  
  15. echo "用时 $run_time 秒\n";  
  16. //关闭连接  
  17. $redis->close();  
  18. function microtime_float(){  
  19. list($usec$sec) = explode(" ", microtime());  
  20. return ((float)$usec + (float)$sec);  
  21. }  
  22.   
  23. ?>  

 

 

  问题出现了瓶颈,有好多公司需要海量数据处理,每秒5000次远不能满足需求,然后由于redis主从服务器上比memcache有更大的优势,为了将来数据的着想,不得不使用redis,这时候出现了一种新的方式,即phpredis提供的pipline功能,该功能能够真正的将几条代码封装成一次请求,从而大大提高了运行速度,50万次的数据执行只有了58秒。测试代码如下:redis4.php

Php代码  收藏代码
  1. <?php  
  2.   
  3. //连接  
  4.   
  5. $redis = new Redis();  
  6.   
  7. $redis->connect('127.0.0.1', 6379);  
  8.   
  9. $time_start = microtime_float();  
  10.   
  11. //保存数据  
  12.   
  13. for($i = 0; $i < 100000; $i ++){  
  14.   
  15.   $pipe=$redis->pipeline();  
  16.   
  17. $pipe->sadd("key$i",$i);  
  18.   
  19. $pipe->expire("key$i",3);  
  20.   
  21. $replies=$pipe->execute();  
  22.   
  23. }  
  24.   
  25. $time_end = microtime_float();  
  26.   
  27. $run_time = $time_end - $time_start;  
  28.   
  29. echo "用时 $run_time 秒\n";  
  30.   
  31. //关闭连接  
  32.   
  33. $redis->close();  
  34.   
  35.    
  36.   
  37. function microtime_float()  
  38.   
  39. {  
  40.   
  41. list($usec$sec) = explode(" ", microtime());  
  42.   
  43. return ((float)$usec + (float)$sec);  
  44.   
  45. }  
  46.   
  47. ?>  

   运用这个操作可以非常完美的将赋值操作和设置过期时间操作打包到一个请求去执行,大大提高了运行效率。

 

redis安装:http://mwt198668.blog.163.com/blog/static/48803692201132141755962/

memcache安装:http://blog.csdn.net/barrydiu/article/details/3936270

redis设置主从服务器:http://www.jzxue.com/fuwuqi/fuwuqijiqunyuanquan/201104/15-7117.html

memcache设置主从服务器:http://www.cnblogs.com/yuanermen/archive/2011/05/19/2051153.html

 来自:http://blog.csdn.net/a923544197/article/details/7594814

http://colbybobo.iteye.com/blog/1986786



redis、memcache和mongodb各自的优缺点是什么,怎么选择呢?

redis、memcahce 比较相似,但与 mongodb 完全不同,几乎没有可比性。

总的来说 redis/memcache 是基于内存的,讲究的是性能,多用作缓存层,比如说存放session。而 mongodb 是面向文档的,存储的是类似JSON的非结构化数据,查询起来非常方便,开发效率高,比较类似传统SQL关系型数据库。

普遍认为redis性能明显好于MemoryCache。所以这里主要比较 Redis 和 Mongodb。

体积

Redis是一个基于内存的键值数据库,它由C语言实现的,以单线程异步的方式工作,与Nginx/ NodeJS工作原理近似。所以文件非常小。编绎出来的主文件还不到 2Mb,在 Linux 服务器上初始只需要占用1Mb左右的内存。

Mongodb安装包则要大的多,跟mySQL差不多,都是百兆级的。

持久化

Redis是先读写内存再异步同步到磁盘,但持久化数据是需要时间的,如果每条记录都触发持久化,则性能优势则体现不出来,这里可能会产生一个问题,就是在数据改动不够多时,数据还没有持久化就重启了系统,这部分数据是有可能丢失的。

这里可以在设置文件中设置与入规则:

save 900 1
save 300 10
save 60 10000

以上规则表明,如果在1秒内发生邮900次数据改动,则开始写入到硬盘。如果10秒发生300次改动,则就持久化。

当你也可以设置成 save 1 1  每次改动都保存到硬盘,但是性能会下降。

MongoDB则不存在内存数据有可能丢失的问题,因为MongoDB每次改动都会写入数据库文件。

数据表

Redis没有严格意义上的表,习惯上一般采用 schema:key 形式做为键值,其中

schema:  可理解为传统数据库中的表名
key:     可理解为表中的主键


比如将 user:1 中的name设置为kris

HSET user:1 name kris

Mongodb则可将collection当作表

var col = db.collection('createIndexExample1');
col.find({}).toArray(function(err, items) {

});

数据写入

Redis 可以通过 hash set数据类型支持,JSON对象的写入,不过是二维的,有深层次JSON对象时,需要先序列化成string [JS代码]

client.hmset(user:1, { username: 'lee', age: '21' }, function(err) {
  console.log(err)
})

 实际上执行的则是

hmset user:1 user_name lee age 21

MongoDB支持复杂结构JSON文件的写入 [JS代码]

var col = db.collection('createIndexExample1');
  col.insert([{a:1, node: {b:1}}], {w:1}, function(err, result) {
  }
});

数据查询

MongoDB支持对JSON对象的任何层次和数据进行查询,使用起来非常方便:[JS代码]

col.find({ a:1 }).toArray(function(err, items) 

});

Redis 出于性能考虑,不能按照 hash object的值来搜索hash对象。

需要借助一系列的复杂操作才能进行数据查询,这一点比较接近数据库的底层。

比如我们有三条学生记录,存放着ID,名字和姓名 [redis 指令]

# 添加 3 个用户和信息

hmset user:1 user_name lee age 21
hmset user:2 user_name david age 25
hmset user:3 user_name chris age 25

如果想要按name和age查询,则要创建相关的数据集合(set)来作为索引

# 维护age索引
sadd age:21 1
sadd age:25 2 3
# 维护name索引
sadd name:lee 1
sadd name:david 2
sadd name:chris 3

然后,求数据集交集(sinter),实现多条件查询,比如我们要名字是lee,年龄是25岁的学生 

# 查找  age = 25 和 name = lee 的用户
sinter age:25 name:lee
  -> 会返回一个空集合




Memcache,Redis,MongoDB(数据缓存系统)方案对比与分析

原创 2014年04月15日 09:56:18
  • 21522

一、问题:
     
    数据库表数据量极大(千万条),要求让服务器更加快速地响应用户的需求。

二、解决方案:
     1.通过高速服务器Cache缓存数据库数据
     2.内存数据库

  (这里仅从数据缓存方面考虑,当然,后期可以采用Hadoop+HBase+Hive等分布式存储分析平台)

三、主流解Cache和数据库对比:

     上述技术基本上代表了当今在数据存储方面所有的实现方案,其中主要涉及到了普通关系型数据库(MySQL/PostgreSQL),NoSQL数据库(MongoDB),内存数据库(Redis),内存Cache(Memcached),我们现在需要的是对大数据表仍保持高效的查询速度,普通关系型数据库是无法满足的。而MongoDB其实只是一种非关系型数据库,其优势在于可以存储海量数据,具备强大的查询功能,因此不宜用于缓存数据的场景。
 
       从以上各数据可知,对于我们产品最可行的技术方案有两种:
         1.Memcached         内存Key-Value Cache
         2.Redis                     内存数据库

四、下面重点分析Memcached和Redis两种方案:

4.1 Memcached介绍  

     Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提供动态、数据库驱动网站的速度,现在已被LiveJournal、hatena、Facebook、Vox、LiveJournal等公司所使用。

4.2 Memcached工作方式分析
     
     许多Web应用都将数据保存到RDBMS中,应用服务器从中读取数据并在浏览器中显示。 但随着数据量的增大、访问的集中,就会出现RDBMS的负担加重、数据库响应恶化、 网站显示延迟等重大影响。Memcached是高性能的分布式内存缓存服务器,通过缓存数据库查询结果,减少数据库访问次数,以提高动态Web等应用的速度、 提高可扩展性。下图展示了memcache与数据库端协同工作情况:

     

     其中的过程是这样的:
           1.检查用户请求的数据是缓存中是否有存在,如果有存在的话,只需要直接把请求的数据返回,无需查询数据库。
           2.如果请求的数据在缓存中找不到,这时候再去查询数据库。返回请求数据的同时,把数据存储到缓存中一份。
           3.保持缓存的“新鲜性”,每当数据发生变化的时候(比如,数据有被修改,或被删除的情况下),要同步的更新缓存信息,确保用户不会在缓存取到旧的数据。

     Memcached作为高速运行的分布式缓存服务器,具有以下的特点: 
  • 协议简单 
  • 基于libevent的事件处理 
  • 内置内存存储方式
  • memcached不互相通信的分布式

4.3 如何实现分布式可拓展性?

     Memcached的分布式不是在服务器端实现的,而是在客户端应用中实现的,即通过内置算法制定目标数据的节点,如下图所示:



4.4 Redis 介绍  

     Redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)和zset(有序集合)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步,当前Redis的应用已经非常广泛,国内像新浪、淘宝,国外像 Flickr、Github等均在使用Redis的缓存服务。

4.5 Redis 工作方式分析

     Redis作为一个高性能的key-value数据库具有以下特征: 
    • 多样的数据模型 
    • 持久化 
    • 主从同步  
     Redis支持丰富的数据类型,最为常用的数据类型主要由五种:String、Hash、List、Set和Sorted Set。Redis通常将数据存储于内存中,或被配置为使用虚拟内存。Redis有一个很重要的特点就是它可以实现持久化数据,通过两种方式可以实现数据持久化:使用RDB快照的方式,将内存中的数据不断写入磁盘;或使用类似MySQL的AOF日志方式,记录每次更新的日志。前者性能较高,但是可能会引起一定程度的数据丢失;后者相反。 Redis支持将数据同步到多台从数据库上,这种特性对提高读取性能非常有益。
     

4.6 Redis如何实现分布式可拓展性?

2.8以前的版本:与Memcached一致,可以在客户端实现,也可以使用代理,twitter已开发出用于Redis和Memcached的代理Twemproxy 。
3.0以后的版本:相较于Memcached只能采用客户端实现分布式存储,Redis则在服务器端构建分布式存储。Redis Cluster是一个实现了分布式且允许单点故障的Redis高级版本,它没有中心节点,各个节点地位一致,具有线性可伸缩的功能。如图给出Redis Cluster的分布式存储架构,其中节点与节点之间通过二进制协议进行通信,节点与客户端之间通过ascii协议进行通信。在数据的放置策略上,Redis Cluster将整个key的数值域分成16384个哈希槽,每个节点上可以存储一个或多个哈希槽,也就是说当前Redis Cluster支持的最大节点数就是16384

     

五、综合结论

   
 应该说Memcached和Redis都能很好的满足解决我们的问题,它们性能都很高,总的来说,可以把Redis理解为是对Memcached的拓展,是更加重量级的实现,提供了更多更强大的功能。具体来说:

1.性能上:
     性能上都很出色,具体到细节,由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比
Memcached性能更高。而在100k以上的数据中,Memcached性能要高于Redis,虽然Redis最近也在存储大数据的性能上进行优化,但是比起 Memcached,还是稍有逊色。

2.内存空间和数据量大小:
     MemCached可以修改最大内存,采用LRU算法。Redis增加了VM的特性,突破了物理内存的限制。

3.操作便利上:
     MemCached数据结构单一,仅用来缓存数据,而Redis支持更加丰富的数据类型,也可以在服务器端直接对数据进行丰富的操作,这样可以减少网络IO次数和数据体积。

4.可靠性上:
     MemCached不支持数据持久化,断电或重启后数据消失,但其稳定性是有保证的。Redis支持数据持久化和数据恢复,允许单点故障,但是同时也会付出性能的代价。

5.应用场景:
     Memcached:动态系统中减轻数据库负载,提升性能;做缓存,适合多读少写,大数据量的情况(如人人网大量查询用户信息、好友信息、文章信息等)。
     Redis:适用于对读写效率要求都很高,数据处理业务复杂和对安全性要求较高的系统(如新浪微博的计数和微博发布部分系统,对数据安全性、读写要求都很高)。

六、需要慎重考虑的部分

1.Memcached单个key-value大小有限,一个value最大只支持1MB,而Redis最大支持512MB
2.Memcached只是个内存缓存,对可靠性无要求;而Redis更倾向于内存数据库,因此对对可靠性方面要求比较高
3.从本质上讲,Memcached只是一个单一key-value内存Cache;而Redis则是一个数据结构内存数据库,支持五种数据类型,因此Redis除单纯缓存作用外,还可以处理一些简单的逻辑运算,Redis不仅可以缓存,而且还可以作为数据库用
4.新版本(3.0)的Redis是指集群分布式,也就是说集群本身均衡客户端请求,各个节点可以交流,可拓展行、可维护性更强大。



版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/suifeng3051/article/details/23739295


Redis、Memcache和MongoDB的区别

>>Memcached

Memcached的优点:
Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key、value的字节大小以及服务器硬件性能,日常环境中QPS高峰大约在4-6w左右)。适用于最大程度扛量。
支持直接配置为session handle。
Memcached的局限性:
只支持简单的key/value数据结构,不像Redis可以支持丰富的数据类型。
无法进行持久化,数据不能备份,只能用于缓存使用,且重启后数据全部丢失。
无法进行数据同步,不能将MC中的数据迁移到其他MC实例中。
Memcached内存分配采用Slab Allocation机制管理内存,value大小分布差异较大时会造成内存利用率降低,并引发低利用率时依然出现踢出等问题。需要用户注重value设计。

>>Redis

Redis的优点:
支持多种数据结构,如 string(字符串)、 list(双向链表)、dict(hash表)、set(集合)、zset(排序set)、hyperloglog(基数估算)
支持持久化操作,可以进行aof及rdb数据持久化到磁盘,从而进行数据备份或数据恢复等操作,较好的防止数据丢失的手段。
支持通过Replication进行数据复制,通过master-slave机制,可以实时进行数据的同步复制,支持多级复制和增量复制,master-slave机制是Redis进行HA的重要手段。
单线程请求,所有命令串行执行,并发情况下不需要考虑数据一致性问题。
支持pub/sub消息订阅机制,可以用来进行消息订阅与通知。
支持简单的事务需求,但业界使用场景很少,并不成熟。

Redis的局限性:
Redis只能使用单线程,性能受限于CPU性能,故单实例CPU最高才可能达到5-6wQPS每秒(取决于数据结构,数据大小以及服务器硬件性能,日常环境中QPS高峰大约在1-2w左右)。
支持简单的事务需求,但业界使用场景很少,并不成熟,既是优点也是缺点。
Redis在string类型上会消耗较多内存,可以使用dict(hash表)压缩存储以降低内存耗用。

Mc和Redis都是Key-Value类型,不适合在不同数据集之间建立关系,也不适合进行查询搜索。比如redis的keys pattern这种匹配操作,对redis的性能是灾难。

>>mongoDB 

mongoDB 是一种文档性的数据库。先解释一下文档的数据库,即可以存放xml、json、bson类型系那个的数据。

这些数据具备自述性(self-describing),呈现分层的树状数据结构。redis可以用hash存放简单关系型数据。

mongoDB 存放json格式数据。

适合场景:事件记录、内容管理或者博客平台,比如评论系统。

1.mongodb持久化原理

mongodb与mysql不同,mysql的每一次更新操作都会直接写入硬盘,但是mongo不会,做为内存型数据库,数据操作会先写入内存,然后再会持久化到硬盘中去,那么mongo是如何持久化的呢
mongodb在启动时,专门初始化一个线程不断循环(除非应用crash掉),用于在一定时间周期内来从defer队列中获取要持久化的数据并写入到磁盘的journal(日志)和mongofile(数据)处,当然因为它不是在用户添加记录时就写到磁盘上,所以按mongodb开发者说,它不会造成性能上的损耗,因为看过代码发现,当进行CUD操作时,记录(Record类型)都被放入到defer队列中以供延时批量(groupcommit)提交写入,但相信其中时间周期参数是个要认真考量的参数,系统为90毫秒,如果该值更低的话,可能会造成频繁磁盘操作,过高又会造成系统宕机时数据丢失过。

2.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟度;支持;分析和商业智能;管理及专业性等问题时,应优先考虑关系型数据库。

3.MySQL和MongoDB之间最基本的区别是什么?
关系型数据库与非关系型数据库的区别,即数据存储结构的不同。

4.MongoDB的特点是什么?
(1)面向文档(2)高性能(3)高可用(4)易扩展(5)丰富的查询语言

5.MongoDB支持存储过程吗?如果支持的话,怎么用?
MongoDB支持存储过程,它是javascript写的,保存在db.system.js表中。

6.如何理解MongoDB中的GridFS机制,MongoDB为何使用GridFS来存储文件?
GridFS是一种将大型文件存储在MongoDB中的文件规范。使用GridFS可以将大文件分隔成多个小文档存放,这样我们能够有效的保存大文档,而且解决了BSON对象有限制的问题。

7.为什么MongoDB的数据文件很大?
MongoDB采用的预分配空间的方式来防止文件碎片。

8.当更新一个正在被迁移的块(Chunk)上的文档时会发生什么?
更新操作会立即发生在旧的块(Chunk)上,然后更改才会在所有权转移前复制到新的分片上。

9.MongoDB在A:{B,C}上建立索引,查询A:{B,C}和A:{C,B}都会使用索引吗?
不会,只会在A:{B,C}上使用索引。

10.如果一个分片(Shard)停止或很慢的时候,发起一个查询会怎样?
如果一个分片停止了,除非查询设置了“Partial”选项,否则查询会返回一个错误。如果一个分片响应很慢,MongoDB会等待它的响应。

 

>>Redis、Memcache和MongoDB的区别

从以下几个维度,对redis、memcache、mongoDB 做了对比,

1、性能

都比较高,性能对我们来说应该都不是瓶颈

总体来讲,TPS方面redis和memcache差不多,要大于mongodb

2、操作的便利性

memcache数据结构单一

redis丰富一些,数据操作方面,redis更好一些,较少的网络IO次数

mongodb支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富

3、内存空间的大小和数据量的大小

redis在2.0版本后增加了自己的VM特性,突破物理内存的限制;可以对key value设置过期时间(类似memcache)

memcache可以修改最大可用内存,采用LRU算法

mongoDB适合大数据量的存储,依赖操作系统VM做内存管理,吃内存也比较厉害,服务不要和别的服务在一起

4、可用性(单点问题)

对于单点问题,

redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整个快照,无增量复制,因性能和效率问题,

所以单点问题比较复杂;不支持自动sharding,需要依赖程序设定一致hash 机制。

一种替代方案是,不用redis本身的复制机制,采用自己做主动复制(多份存储),或者改成增量复制的方式(需要自己实现),一致性问题和性能的权衡

Memcache本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的hash或者环状的算法,解决单点故障引起的抖动问题。

mongoDB支持master-slave,replicaset(内部采用paxos选举算法,自动故障恢复),auto sharding机制,对客户端屏蔽了故障转移和切分机制。

5、可靠性(持久化)

对于数据持久化和数据恢复,

redis支持(快照、AOF):依赖快照进行持久化,aof增强了可靠性的同时,对性能有所影响

memcache不支持,通常用在做缓存,提升性能;

MongoDB从1.8版本开始采用binlog方式支持持久化的可靠性

6、数据一致性(事务支持)

Memcache 在并发场景下,用cas保证一致性

redis事务支持比较弱,只能保证事务中的每个操作连续执行

mongoDB不支持事务

7、数据分析

mongoDB内置了数据分析的功能(mapreduce),其他不支持

8、应用场景

redis:数据量较小的更性能操作和运算上

memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写少,对于数据量比较大,可以采用sharding)

MongoDB:主要解决海量数据的访问效率问题

https://www.cnblogs.com/tuyile006/p/6382062.html


:)以下是我个人的补充
Mc和Redis都是Key-Value类型,不适合在不同数据集之间建立关系,也不适合进行查询搜索。比如redis的keys pattern这种匹配操作,对redis的性能是灾难。

Mogodb
mogodb是一种文档性的数据库。先解释一下文档的数据库,即可以存放xml、json、bson类型系那个的数据。这些数据具备自述性(self-describing),呈现分层的树状数据结构。redis可以用hash存放简单关系型数据。
mogodb存放json格式数据。
适合场景:事件记录、内容管理或者博客平台,比如评论系统。

nosq的产品目前很多,架构师的选择导向主要有以下两个因素:
1)适合应用程序的使用场景,比如评论系统用比较适合使用mogodb,而mc也可以实现(应用程序把数据转化成json存入,但是部分数据更新不方便)
2)团队开发比较熟悉的技术,比如一个团队一直在使用mc,因而有限选择mc,而不是redis。
还有中严重的状况,开发团队一直使用mogodb,在适合kv nosq的场景下而继续选择mogodb。

推荐给大家的一本书籍:<NoSQL精粹>


redis和memcache是两种缓存机制,主要用来减少数据库压力提高访问速度。redis可以将缓存保存到硬盘,重启电脑可以继续调用,还有很多memcache所没有的功能,memcache只是单纯的缓存在内存中,功能单一,效率高。至于mongoDB,这尼玛就是一数据库。





阅读更多
个人分类: NoSQL
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭