Numpy归一化:什么是numpy归一化,为什么要使用它?
在数据分析和机器学习中,我们经常需要对数据进行预处理,其中一种常用的技术是数据归一化。数据归一化是一种将数据缩放到指定范围内的技术,通常是将数据缩放到0和1之间,或将数据缩放到-1和1之间。数据归一化有助于提高模型的稳定性和准确性,同时避免某些特征对模型的影响过于显著。
在Python中,Numpy是一个强大的数学库,提供了许多数学函数和数组操作。在数据科学中,Numpy被广泛用于数据预处理和运算。Numpy也提供了几种用于数据归一化的函数。
Numpy归一化函数
Numpy提供了两种主要的归一化函数 - numpy.normalize()
和numpy.interp()
。下面我们一一介绍这两个函数。
numpy.normalize()
numpy.normalize()
函数用于将数组标准化,使其总和为1。该函数的语法如下:
numpy.normalize(arr,axis=None,norm='l2',return_norm=False)
其中,arr
是要进行标准化的数组,axis
是要标准化的轴,norm
是要使用的规范化类型,可以是’l1’,‘l2’或’inf’,return_norm
是一个布尔值&#