- 博客(3)
- 收藏
- 关注
转载 梯度下降
阅读目录1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD 4. 总结 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进行比较。 一般线性回归函数的假设函数为:hθ=∑nj=0θjxj...
2019-09-27 15:08:25 88
原创 朴素贝叶斯法
1、概要朴素贝叶斯法是典型的生成学习方法,由训练数据学习联合概率分布p(x,y),然后求得后验概率分布p(y|x)。先学习先验概率分布p(Y),条件概率分布p(X|Y),后得到联合概率分布,p(X,Y) = p(X|Y)*p(Y)。学习概率分布的方法用到的是极大似然估计和贝叶斯估计。贝叶斯估计主要是为了避免概率为0的出现。朴素贝叶斯法的基本假设是条件独立性,朴素贝叶斯法利用贝叶斯...
2019-09-24 16:13:01 237
原创 kd树,用于最近邻算法
k近邻k近邻法是一种基本的分类与回归方法。输入是训练数据集,输出是给定实例x所属的类别y。k近邻法模型的三要素:k值的选择,距离的度量和分类决策规则 。当k等于1时,k近邻则为最近邻。k值一般选择比较小的值,通常采用交叉验证的方法来选取最优的k值。距离一般使用欧氏距离,曼哈顿距离,minkowski距离。分类的决策规则,多数表决,当分类的损失函数是0-1损失函数时,多数表决等...
2019-09-24 14:48:51 866
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人