算法分析5

  1. 问题
    P为笛卡尔平面上n>1个点构成的集合,求最近的两个点的距离(n=2k)

  2. 解析
    蛮力穷举算法:遍历整个点集,计算每一对点之间的距离d,最终找出最近距离。
    显然这样的方法时间复杂度为O(n2)

分治算法:首先划分整个点集划分为两各部分S1和S2,每个子点集的点的数量都为n/2,最近点对会出现点对在S1中,点对在S2中,点对分别在S1和S2中。用递归分别计算前两种情况,最后分析第三种情况。最后合并,分析比较出三者中的最小值。
O(nlogn)。
3.伪代码
double Closest_Pair(int left, int right)
{
定义距离差的初始值为无穷大
设置循环变量
如果只有一个点的时候,返回值为无穷大
如果刚好两个点的时候,返回两点的距离即可
大于等于三个点的时候左右两边进行递归
比较左右两边的点对距离,找出最小值
储存宽度为d的点
找出符合要求的距离mid横坐标小于等于d的点
数组temp用于暂时储存符合要求的点的序号
纵坐标寻找最短距离
}
4. 分析
蛮力算法:
时间复杂度O(n2)
分治算法:
时间复杂度W(n)=2W(n/2)+O(n)
W(n)=O(nlogn)
5.源码地址
https://github.com/xujinyuanky/-/tree/master

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值