有监督学习
文章平均质量分 94
许久是混子
我是混子我是混子我是混子。。。。。。
展开
-
8.GDBT算法原理及实现
GBDT一、概念文章目录一、概念二、算法原理2.1 原理2.2 算法流程2.3 目标函数2.4 梯度提升于梯度下降三、Python实现四、XGBoost4.1 概念4.2 区别与联系四、小结 GBDT(Gradient Boosting Decision Tree)GBDT(Gradient \; Boosting \; Decision \;Tree)GBDT(GradientBoostingDecisionTree) 梯度提升决策树,是 Gradient BoostingGradient原创 2021-12-27 16:43:24 · 5164 阅读 · 0 评论 -
7.自适应增强算法
自适应增强一、概念AdaBoostAdaBoostAdaBoost 是 Boosting MethodBoosting \; MethodBoostingMethod 类继承算法的典型代表,其全称是 Adaptive BoostingAdaptive \; BoostingAdaptiveBoosting,即自适应增强。它与 Bagging MethodBagging \; MethodBaggingMethod 类算法不同的是:它不是通过随机抽样产生每个基模型的训练集,而是通过调整训练集中每个样原创 2021-12-27 15:02:30 · 2310 阅读 · 0 评论 -
6. 随机森林
随机森林文章目录一、概念二、构建2.1 影响随机森林分类性能的主要因素2.2 算法流程2.3 OOB2.4 算法特性三、Python实现一、概念 随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。 随机森林(Random ForestRandom \; ForestRandomForest,简称 RFRFRF )是 BaggingBaggingBagging 的一个扩展变体。RFRFRF 在以决策树为基学习器构建 BaggingBaggingBagging原创 2021-12-21 16:40:16 · 1972 阅读 · 0 评论 -
5. 集成学习引入
集成学习引入文章目录一、概念二、集成学习策略三、Bagging四、Boosting一、概念 面对一个机器学习问题,通常有两种策略。一种是研发人员尝试各种模型,选择其中表现最好的模型做重点调参优化。这种策略类似于比赛,通过强强竞争来选拔最优的运动员,并逐步提高成绩。另一种重要的策略是集各家之长,如同君主广泛的听取众多谋臣的建议,然后综合考虑,得到最终决策。后一种策略的核心,是将多个分类器的结果统一成一个最终的决策。使用这类策略的机器学习方法统称为集成学习。其中每个单独的分类器称为基分类器。#merm原创 2021-12-21 16:00:23 · 1361 阅读 · 0 评论 -
4. 朴素贝叶斯
朴素贝叶斯文章目录一、概念二、贝叶斯分类方法2.1 预测2.2 训练2.3 独立性假设2.4 特性三、高斯朴素贝叶斯3.1 引入3.2 Python实现四、多项式朴素贝叶斯五、伯努利朴素贝叶斯一、概念 朴素贝叶斯是应用贝叶斯定理进行有监督学习的一种分类模型。在该模型中,将贝叶斯定理公式 P(A∣B)=P(A)P(B∣A)P(B)P(A | B) = \frac{P(A) P(B|A)}{P(B)}P(A∣B)=P(B)P(A)P(B∣A) 中的事件 AAA 看成分类标签,事件 BBB 看出数据特征原创 2021-12-21 15:03:28 · 1357 阅读 · 0 评论 -
3. 决策树原理及数学建模实战
决策树是一种非常成熟的算法,它是一种自上而下,对样本数据进行树形分类的过程,本文讲解了决策树的常见算法即在数学建模竞赛的应用。原创 2021-12-18 20:27:57 · 9768 阅读 · 0 评论 -
2. 支持向量机
SVM 是基于统计学习理论的一种机器学习方法。简单地说,就是将数据单元表示在多维空间中,然后在这个空间中对数据做划分的算法。原创 2021-12-17 16:00:21 · 2062 阅读 · 0 评论 -
1. 逻辑回归理论与Python实现
逻辑回归是一种很容易实现的分类模型,但仅在线性可分类上表现不错。是一种应用广泛的 二分类模型,而且可以利用 OVR 技术扩展到多元分类。原创 2021-12-16 15:43:14 · 1681 阅读 · 0 评论