深度学习
文章平均质量分 57
xuke100
主要从事云桌面开发
展开
-
从google的源代码剖析word2vec原理
这篇文章很不错,把google提供的示例代码讲解的很到位,文章链接:http://www.jeyzhang.com/tensorflow-learning-notes-3.html转载 2017-05-07 15:29:08 · 687 阅读 · 0 评论 -
Ubuntu16.04+cuda-8.0+cudnn-v5.1+tensorflow0.8-gpu/tensorflow1.0-gpu安装教程
由于项目需要,我们的深度学习算法必须要加速,因此,组里给了我两个GPU:GTX-750 Ti & GRID-k2GTX-750 Ti被我安装在了本地,GRID-k2安装在了服务器上,需要ssh登录上去使用,接下来就是各种坑。。。。。。。。。。。。。。。。。。。。。。。。。。。一、先说一下GRID-k2,服务器端的安装:1. 首先如果你也只有这张卡,抱歉,你没办法在 点击这里可以看原创 2017-06-16 14:06:46 · 3786 阅读 · 2 评论 -
如何得到卷积层输出的深度--CNN卷积层
tensorflow代码(Tensorflow官方文档)中:w_conv1=weight_variable([5,5,1,32]),一直不明白这个32是怎么来的,表示的是什么?后来看到cs231n-知乎课程翻译的卷积神经网那一章的一段话:参数共享:在卷积层中使用参数共享是用来控制参数的数量。就用上面的例子,在第一个卷积层就有55x55x96=290,400个神经元,每个有11x11原创 2017-04-07 13:23:53 · 13222 阅读 · 4 评论 -
如何调整深度学习算法模型的参数以及模型融合
一篇很不错的关于如何调整深度学习模型参数的博客转载 2017-08-19 10:32:46 · 4817 阅读 · 0 评论 -
onehot和tensorflow中的embedding_lookup有什么关系,为什么词向量会在每一次训练迭代时更新
onehot和embedding_lookup的关系,可以参考这里主要讲一下,为什么每一次训练迭代,词向量就会更新一次:embedding_lookup不是简单的查表,id对应的向量是可以训练的,训练参数个数应该是 category num*embedding size,也就是说lookup是一种全连接层。啥意思?1.先解释一下onehot: onehot:onehot是...原创 2018-06-13 11:37:20 · 3506 阅读 · 2 评论 -
Tensorflow中RNN/LSTM内部具体是如何处理数据的,batch、num_steps是如何被丢尽网络里,训练的流程
在学习Tensorflow的源码时发现一个很重要的现象,就是tensorflow在训练RNN/LSTM的机制,因为这两种网络被常常用于NLP方面,所以这里就拿NLP举例子。承接上一篇:Tensorflow中的词向量我提到了Tensorflow中的词向量的表达方式,那么在LSTM中,一句话比如5个单词,按照词向量,就是一个3维的矩阵[[词1对应的词向量],[词2对应的词向量],[词3对应的词向量],...原创 2018-06-14 19:32:42 · 5105 阅读 · 1 评论