大模型在金融领域的应用与安全研究

金融领域拥有天然的大量数据积淀,为大模型在金融领域的应用提供了良好的数据基础,因此金融行业大模型相较于其他行业的垂直大模型中落地速度相对较快。同时金融领域大模型的应用场景较多,大模型有助于从不同角度提升原有从业人员及机构的工作效率。大模型在金融领域的实践需要考虑多方因素,除了大模型技术框架对现有金融业务的效率提升以外,金融业务的专业性、严谨性、安全性及合规性要求对大模型在金融领域的应用实践也提出了更加严格的风险防控措施要求。

大模型的发展与应用

1.大模型架构。大模型最早诞生于自然语言处理领域,最开始自然语言模型通过神经网络预测单词,加入注意力机制后,使单词之间建立关系而考虑整句语言的含义,从而建立Transformer架构。谷歌和微软分别针对Transformer的编码部分以及解码部分进行研究从而产生了两条技术路线,即以BERT为代表的仅用编码器部分的路线和以GPT为代表的仅用解码器部分的路线。BERT与GPT都用到了预训练范式,预训练范式是指利用大量的数据训练一个基础模型,然后在下游任务上进行一点微调就能够在相应的任务上得到很好的性能表现。通过不断叠加数据并增加模型参数规模以及优化模型的提示工程,不仅可以解决更复杂的任务,同时也拥有了更强大的文本涌现能力。仅用编码器架构的大模型擅长对文本内容进行分析、分类,包括情感分析和命名实体识别,如BERT。仅用解码器架构通常用于序列生成任务,如文本生成、机器翻译等需要生成序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银行金融科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值