在最近两周的客户拜访中,我们发现客户在深入了解DeepSeek后,都提出了一个关键问题:除了知识库之外,如何将DeepSeek与现有系统无缝对接,并充分展现其作为大模型的独特魅力。
面临的困境
在大模型的应用落地过程中,我们面临着诸多挑战,这些问题不仅影响了模型的落地效率,也制约了其在实际场景中的价值释放。具体而言,端到端解决方案的缺失导致从数据处理、模型选择、训练、部署到上线运维的全流程开发复杂且协同不足。例如,RAG检索准确率低、软硬件适配难等问题,直接影响了最终的用户体验。
同时,行业知识与模型结合不足的问题也十分突出。大模型在特定行业的应用需要与行业知识紧密结合,但目前许多模型缺乏对行业特定需求的深度理解。这使得模型在实际业务场景中的适用性受到限制。
此外,大模型生成的内容存在不确定性,导致用户在实际使用中难以完全信任其输出。这种输出可靠性的不足,进一步削弱了模型在关键业务中的应用价值。
数据工程方面,大模型的训练需要高质量、大规模的数据支持,但数据的收集、清洗和标注过程耗时耗力。同时,数据隐私和安全问题也成为企业在落地过程中面临的重要挑战。
大模型与现有系统对接的困境本质上是技术能力与业务需求之间的错位,而 Dify 作为开源的大模型应用开发平台,