GraphRAG在企业知识服务中的应用落地

导读 本文聚焦 GraphRAG 技术在工业制造业企业知识服务中的技术实现路径,系统性剖析当前 #RAG(Retrieve and Generate)技术的核心痛点,提出基于知识图谱的增强方案(GraphRAG),并从技术架构设计、知识建模与融合、图推理优化等维度阐述其工业落地方法。

主要内容包括以下几个部分:

1. 工业场景需求与技术挑战

2. GraphRAG 核心技术

3. 关键痛点问题及解决路径总结

4. 结语

分享嘉宾|杜振东 南京云问网络技术有限公司 算法负责人

编辑整理|赵培姿

内容校对|李瑶

出品社区|DataFun


01

工业场景需求与技术挑战

在尝试与大模型结合的过程中,RAG 成为最常见的落地方式。企业通常搭建私有化知识库,基于知识库进行检索匹配、答案召回,再由大模型做答案生成。

然而传统 RAG 技术在工业场景中暴露出显著局限性:

  • 知识体系缺失:依赖文档暴力拆分(Chunking)导致实体语义关联缺失,缺少分类清晰的知识体系,难以实现快速的知识定位;

  • 内容覆盖不足:知识仅以 QA 形式记录,内容存在缺失,且难以捕捉动态变化信息;

  • 问答准确率受限:语义理解能力不足导致问题定位失准,回答准确率不佳;

  • 幻觉风险难控:即便采用 32B 以上大模型(如 DeepSeek R1),输出仍可能偏离企业知识库,或与用户问题不符。

图片

02

GraphRAG 核心技术

为解决上述问题,我们尝试引入知识图谱,以弥补大模型的不足。

1. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银行金融科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值