导读 本文聚焦 GraphRAG 技术在工业制造业企业知识服务中的技术实现路径,系统性剖析当前 #RAG(Retrieve and Generate)技术的核心痛点,提出基于知识图谱的增强方案(GraphRAG),并从技术架构设计、知识建模与融合、图推理优化等维度阐述其工业落地方法。
主要内容包括以下几个部分:
1. 工业场景需求与技术挑战
2. GraphRAG 核心技术
3. 关键痛点问题及解决路径总结
4. 结语
分享嘉宾|杜振东 南京云问网络技术有限公司 算法负责人
编辑整理|赵培姿
内容校对|李瑶
出品社区|DataFun
01
工业场景需求与技术挑战
在尝试与大模型结合的过程中,RAG 成为最常见的落地方式。企业通常搭建私有化知识库,基于知识库进行检索匹配、答案召回,再由大模型做答案生成。
然而传统 RAG 技术在工业场景中暴露出显著局限性:
-
知识体系缺失:依赖文档暴力拆分(Chunking)导致实体语义关联缺失,缺少分类清晰的知识体系,难以实现快速的知识定位;
-
内容覆盖不足:知识仅以 QA 形式记录,内容存在缺失,且难以捕捉动态变化信息;
-
问答准确率受限:语义理解能力不足导致问题定位失准,回答准确率不佳;
-
幻觉风险难控:即便采用 32B 以上大模型(如 DeepSeek R1),输出仍可能偏离企业知识库,或与用户问题不符。
02
GraphRAG 核心技术
为解决上述问题,我们尝试引入知识图谱,以弥补大模型的不足。