
基于YOLO的视觉检测小项目
文章平均质量分 75
深蓝海拓
职业工控,业余编程票友
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于深度学习的视觉检测小项目(十八) 图像标注功能的初步规划
,你可以上传自己的图片,并使用SAM的三种分割方式进行体验:多点提示、目标框选以及全自动分割。对于我的这个项目的图像特征,在网站上实践后,多点提示的分割方法识别率非常高,并且采用点输入的方式标注效率比框选方式更高,所以采用这种方法作为项目的分割方法。作为一个视觉深度学习项目,必不可少的功能是样本图像的特征标注。经过实践和比较,SAM在几种常见的标注工具中,标注的准确率和效率方面都很优秀,并且安装使用最方便,所以本项目采用了SAM作为标注的基础工具。shifft+鼠标右键的功能是删除所有的提示点;原创 2025-02-07 00:43:50 · 570 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(十七) 用户管理后台的编程
完成了用户管理功能的阶段原创 2025-02-03 23:58:41 · 229 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(十六) 用户管理界面的组态
用户分为三个组,管理员、普通用户、访客。•添加和删除用户、更改所有用户的信息(用户名、登录密码、所在分组等)、查看和备份以及复制数据库;更改自己的用户名和密码、开展工作业务、查看数据库;查看数据库。原创 2025-02-02 00:21:28 · 607 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(十五) 用户的登录界面
在项目的样式表文件style_uiproj.qss中添加这两个类的通用设置,并且在颜色设置文件color_setting.json和色卡文件color_card.json中增添新的设置项。将user_login.ui文件用uic工具转换为同名的user_login.py文件,并编写后端文件user_login_func.py。如果需要改变整体的显示风格或修改局部的颜色值,只需修改color_setting.json或color_card.json即可。经过以上设置,新建的对话框就继承了项目的整体显示风格。原创 2025-01-21 11:37:42 · 490 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(十四) 用SQLite数据库进行用户管理
运行上面的代码后,就会创建名为“project_db.db”的数据库文件,并且在数据库中有一个名为users的表,表中有user、passwd、user_group三列数据,分别是用户名、密码和用户分组的数据。将上面的代码封装为函数,并在用户的表中创建一个管理员,初始名和密码都是“admin”;创建数据库(创建数据库文件)⇒创建用户表(创建表)⇒创建用户(插入数据)⇒修改用户信息(修改数据)。根据上面的流程,在项目中创建一个有关用户的数据库文件,然后在数据库文件中创建一个用户并为他设置密码。原创 2025-01-15 21:53:43 · 581 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(十三) 资源文件的生成和调用
在使用 PySide6 进行开发时,管理应用程序的资源(如图标、图片、字体、样式表、音视频等)是一个常见的任务。PySide6 提供了一个工具 pyside6-rcc,它能够将资源文件(.qrc)编译成 Python 模块,然后在程序中加载和使用。这里在本项目中来演示一下资源文件的生成和调用。原创 2025-01-14 23:51:41 · 1143 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(十二) 使用线条边框和渐变颜色美化界面
上面的样式表设置中,顶部方框(form_top)的下边(border_bottom)用了#000000的黑色线条,而下部的form_main用了#464646的对比色作为上边(border_top),这样就在分界处产生了立体感。由于能够找到的范例并不多,以上只是我作为一个业余编程爱好者的一些粗鄙探索,也算是抛砖引玉,期望与各位同学多多交流。到目前为止,已经建立起了基本的项目架构,样式表体系也初步具备,但是与成品的界面相比,还是差点什么。是的,我的界面太“平” 了,没有立体感,没有质感。原创 2025-01-13 23:38:02 · 477 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(十一) 动态样式表的实践
这样的样式表文件,有一个是项目级别的总设置,在总设置里,根据继承关系从父到子逐层设计大类和通用的特性,在总设置里基本就可以涵盖大部分的部件的显示特性。动态样式表的设计思路是使用了类似占位符的概念,设置项和颜色值都用代称,通过改变代称映射的实际值,就可以动态和灵活地改变样式表,这一点,与编程中的变量概念也很相似,暂且称之为伪变量。我看过非常多的pyside的demo,并没有见到过类似的先例,所以一切都是在黑暗中摸索和实践,也许有比我更好的方法,期待高人的指正。原创 2025-01-12 23:46:37 · 1369 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(十) 通过样式表改变界面的外观
在PS中打开之前创建的色卡文件,用吸管拾色器吸取各个色卡的色彩值:并保存为JSON文件,color_card.json,文件保存在项目的/settings目录下:二、编辑样式表样式表的高级操作基础知识:PySide6的样式表的常用高级方法汇总-CSDN博客首先,在designer界面右侧的对象查看器中可以看到所有的部件的层次从属关系: 然后,根据层次关系,编辑样式表。原则上,样式表只存在于最顶层的部件中,目的有二:一是可以灵活运用类和类型选择器以及后代选择器、子元素选择器对子部件进行原创 2025-01-10 22:45:22 · 584 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(九) 组态起始界面
6、在顶部显示区(form_top)拖入三个Label,从左到右分别命名为:label_logo,label_name,label_date,作为企业logo、页面名称、日期显示的显示载体。11、拖5个按钮到按钮容器(form_btns)中,分别命名为:btn_login,btn_predict, btn_train, btn_datas,btn_quit。3 、在基底界面的主显示区(form_main)的上部再拖入一个Frame,命名为form_top,作为顶部显示区。最大高度和最小高度均为60;原创 2025-01-09 00:51:03 · 1042 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(八) 界面的配色系统和样式表的概念
由于我的业务范围偏向于工业scada软件,所以在设计风格和体系建设上都比较倾向于这方面。类似于scada和大数据展示这一类需要操作员长期盯着看的屏幕,有一个基本要求就是颜色不能过于鲜艳,就是说色纯度不要太高,尤其是不要大面积使用荧光色、纯红、纯绿、纯蓝这些过于显眼的颜色,容易引起人的视觉疲劳。这几年流行的暗灰界面,就很适合做scada的主界面。一个典型的优秀暗黑界面demo赏析:Intel killer软件界面。颜色配置很和谐,很舒服,看久不累。原创 2025-01-07 23:43:37 · 928 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(七) 开始组态界面
必须注意的一点,做工程不是搞艺术,千万不要过多加入私人的和个性的元素,比如把图标和背景搞成自己喜欢的动漫人物之类的,因为这样极大概率会引起客户的反感,认为作者轻视项目和审美自私,对客户缺乏应有的尊重。作为一个软件界面,它的另一个必备特性是对显示屏幕分辨率的自动适配能力,我们不太可能让客户只能使用与我们的编程电脑相同分辨率的显示器。这样,界面上的有些区域就要具备自动缩放的属性,比如图片显示区。ui_project.py:项目级别的一个脚本,所有的对于ui项目而言的全局信号和变量都在这个脚本内定义。原创 2025-01-06 22:22:19 · 1027 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(六) 项目的信号和变量的规划
看过很多的博主提供的demo都是课后作业水平的,只能说实现了基本功能,前后端分离不彻底,移植困难,修改困难,信号、变量、槽函数分布层级不清,引用和定义盘根错节(好吧我承认,其实我开始做的项目也是这样的),当需要修改或者增减画面时牵一发而动全身。层级一个典型的应用就是系统时间的显示,在所有的窗口的时间显示部件上的显示内容,都是由同一个全局的变量提供,把这个变量用一个全局的信号每秒发射一次,在需要使用这个信号的窗口编写接收信号的槽函数,对窗口内的时间显示部件进行刷新。增加画面的同时,增加新的变量和信号、槽。原创 2025-01-05 00:41:41 · 598 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(五) 项目的初步整体规划
如图,机电平台由工业相机、环形光源、光源电源以及PLC构成。环形光源是经过特殊改造的,在采样标注阶段,通过PLC控制,可以发出随机角度和强度的照明光,以模拟自然光的多变特性,提高模型的泛化能力。由于是一个入门级的小项目,我还是有信心和有能力独立完成以上所有任务,所以分工协作部分的规划就忽略,直接进入分块的任务。• 前端界面设计(由主界面、标注界面、训练界面、预测界面、查询界面等部分构成)• 机电原理图的绘制,机电硬件的选型、组装,PLC软件设计。• 按照任务块的规划,分工种、分阶段进行编程和单试、联调。原创 2025-01-03 00:04:53 · 608 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(四) pyside6和python一些常用的修饰器和属性、工具的基础知识
装饰器用途声明静态方法,无需访问实例或类。声明类方法,第一个参数是类本身。@property将方法转换为属性,支持 getter 和 setter。缓存函数返回值,避免重复计算。声明自定义信号,用于对象间通信。声明 Qt 属性,支持在 QML 或 Qt Designer 中使用。创建上下文管理器,用于资源管理。自动生成类的__init____repr__等方法,简化类定义。声明函数重载,帮助静态类型检查工具理解函数的不同调用方式。在单元测试中模拟对象或函数的行为。@flag定义一个标志类型。@Enum。原创 2025-01-02 17:03:51 · 1167 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(三) 通过设计一个简单的用户界面设计了解pyside的基本套路
首先必须知道的是,本文所使用的在designer中用图形界面布局,然后使用pyuic转换成.py文件,然后再导入.py文件的方法,特别适合搞过工业控制界面设计的人,比如熟悉WINCC、组态王的。在pycharm中鼠标右键,External tools->QtDesigner,打开designer,在弹出的窗口选择Main Window,点Creat按钮,创建一个主窗口。目录结构没有固定的标准,pyside官网的demo也有它固定的推荐套路,根据自己的使用习惯和编程能力,建立最适合的目录结构即可。原创 2025-01-02 00:53:30 · 1055 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(二) 环境和框架搭建
SAM的环境要求:YOLO V8的环境要求:YOLO集成在ultralytics库中,ultralytics库的环境要求:1、确定pytorch版本:根据 PyTorch=1.10.0,在下面网页中搜索1.10.0:如果用上面的命令安装下载速度慢,可以换为国内源:2、从上面同时得知cuda=11.3,综合以上,需要安装的所有版本为:cuda=11.3Python=3.9下载并安装。安装完之后进入python,import torch,出现了错误提示:原因是numpy版本过高。原创 2024-12-31 23:46:14 · 1211 阅读 · 0 评论 -
基于深度学习的视觉检测小项目(一) 项目概况
由于OpenCV的局限,缺乏泛化能力,对检测样品的拍摄光线和品种适应能力差,所以用AI取代OpenCV,重做一次,作为一个AI视觉项目的入门练习。拍摄产品样本获得产品的图像数据,使用sam对图像进行自动标注,生成特征图像,特征图像送入YOLO进行训练,获得权重模型。使用工业相机,使用自然光或电光源。如果模型有足够的泛化能力满足需求,尽量用自然光,自然光达不到要求再用电光源。使用YOLO对产品的图像数据进行预测,计算后得出量化的结论。各种图像和数据通过sql归档。原创 2024-12-31 10:52:31 · 622 阅读 · 0 评论