代数方程的求解与抽象代数课程的引入


在课程中同学们将了解到从古代到现代,数学家们如何逐步解决多项式方程的求解问题。从最简单的一次方程(线性方程)开始,到二次方程的求根公式,再到三次方程的卡尔达诺公式和四次方程的费拉里方法,这些历史性的突破不仅展示了数学家的智慧与毅力,也揭示了数学理论的不断演进。本课程包含有如下重要概念:
群的概念:深入学习群的定义和基本性质,包括封闭性、结合律、单位元、逆元等。通过实例(如对称群、置换群等),学生将理解群在描述数学结构和解决实际问题中的重要作用。
域的概念:域作为代数系统中的一个重要概念,学生将掌握其定义和基本性质(如加法与乘法的封闭性、交换律、分配律等)。特别地,代数闭域的概念及其与多项式方程根的关系将是学习的重点之一。
Galois理论:作为抽象代数的核心内容之一,Galois理论将向学生展示如何通过代数手段(如Galois群和Galois扩张)来研究多项式方程的求解问题。学生将学习Galois定理及其推论,并通过具体例子理解其在多项式方程求解中的应用。
今天我们将踏上一段数学探索的旅程,首先聚焦于数学中一个既基础又充满魅力的领域——低次方程的求解。在接下来的10分钟里,我们将一起回顾并深入理解一次方程(线性方程)和二次方程的求解方法,感受它们在数学史上的重要地位。

**一、一次方程的求解(线性方程)**

我们的旅程从最简单的数学语言开始——一次方程,也称为线性方程。一次方程是形如ax + b = 0(其中a和b是常数,且a ≠ 0)的方程。这类方程的求解过程直观且直接,它代表了数学中最基本的“平衡”概念。
求解步骤简述:
移项:将方程中的常数项移至等号的另一边,得到ax = -b。
系数化为1:通过两边同时除以a,得到x = -b/a。
这个过程简单而直接,但它蕴含了代数运算的基本法则和逻辑推理的基础。一次方程的求解是后续更复杂方程求解的基石。
互动环节:
在此刻,我想邀请大家一起回忆并巩固这一知识。请问有哪位同学愿意分享一下,当你遇到一个线性方程时,你的第一步通常是做什么?(等待学生回答,如“移项”)非常棒!移项是我们解决线性方程的第一步,也是关键一步。
**二、二次方程的求解**
在代数学中,二次方程的求解公式是广为人知的,而更高次(三次及以上)方程的求解则相对复杂,且不一定存在通用的根式解公式。下面我将分别介绍二次方程和更高次方程的求解方法。

### 二次方程的求解公式

二次方程的一般形式为:

$$ ax^2 + bx + c = 0 $$

其中 $a \neq 0$。其求解公式,也称为求根公式,为:

$$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$

这个公式给出了方程的两个解(当判别式 $b^2 - 4ac > 0$ 时,方程有两个不相等的实根;当 $b^2 - 4ac = 0$ 时,方程有两个相等的实根,即一个重根;当 $b^2 - 4ac < 0$ 时,方程没有实根,但有两个共轭复数根)。

### 更高次方程的求解

对于三次方程和四次方程,虽然存在特定的求解公式(如卡尔达诺公式和费拉里方法),但这些公式通常非常复杂,且在实际应用中可能不如数值方法方便。此外,随着方程次数的增加,求解的复杂性急剧上升。

- **三次方程的卡尔达诺公式**:虽然给出了三次方程的根式解,但涉及到了复数运算和三次单位根,使得求解过程相对繁琐。

- **四次方程的费拉里方法**:通常需要将四次方程转化为一个三次方程和一个二次方程的组合来求解,这进一步增加了求解的复杂性。

对于五次及更高次的方程,情况则更为复杂。在19世纪,挪威数学家阿贝尔证明了五次及更高次的一般代数方程不可能有根式解(即解不能仅通过有限次的加、减、乘、除、开方等运算得到)。这一结论被称为阿贝尔-鲁菲尼定理,它标志着代数方程求解理论的一个重要转折点。

在上一部分,我们回顾了一次方程和二次方程的求解方法,它们作为数学大厦的基石,为我们打开了代数世界的大门。今天,我们将继续我们的探索之旅,走进三次方程和四次方程的求解世界,一同领略那些古老而智慧的解法,以及它们背后的历史与故事。

**三、历史背景**

三次方程的求解:
我们的故事首先要追溯到文艺复兴时期的意大利数学家和占星家卡尔达诺。然而,在卡尔达诺之前,另一位数学家菲洛已经为三次方程的求解铺平了道路。菲洛提出了通过替换法将三次方程转化为二次方程的思路,虽然他没有完全解决所有情况,但他的工作为后来的研究者提供了宝贵的启示。卡尔达诺在此基础上,结合了他自己的研究和塔尔塔利亚的秘密,最终提出了三次方程的求根公式,即现在所称的卡尔达诺公式。这一成就不仅解决了三次方程的求解问题,也标志着代数学的一个重大进步。

四次方程的求解:
如果说三次方程的求解是卡尔达诺的辉煌时刻,那么四次方程的求解则是另一位数学家——费拉里的杰作。费拉里在卡尔达诺工作的基础上,进一步探索了四次方程的求解方法。他通过巧妙的变换和分组,将四次方程转化为一个可解的三次方程和一个二次方程,从而找到了四次方程的根。费拉里的方法虽然复杂,但它为四次方程的求解提供了系统的解决方案。

**四、方法概述**

三次方程的卡尔达诺公式:
卡尔达诺公式通过引入新的变量(通常是方程的某个根的三次幂)来简化方程,然后利用二次方程的求根公式来求解这个新的方程。最终,通过一系列代数运算,我们可以找到原三次方程的根。然而,这个公式有一个显著的局限性,那就是它可能涉及到复数根,这在当时是一个相对新颖且难以理解的概念。

四次方程的费拉里方法:
费拉里方法则更加复杂和技巧性。它首先通过对方程进行一系列的变换和分组,将四次方程转化为一个可解的三次方程和一个二次方程。然后,分别求解这两个方程,并通过一系列代数运算来找到原四次方程的根。费拉里的方法虽然有效,但其过程繁琐且难以记忆,这在一定程度上限制了它的应用。

三次方程和四次方程的求解公式在数学史上具有重要意义,它们分别代表了代数方程求解领域的两个重要里程碑。以下是对这两个方程求解公式的详细介绍:

### 三次方程的求解公式

三次方程的一般形式为:

$$ ax^3 + bx^2 + cx + d = 0 $$

其中 $a \neq 0$。为了简化求解过程,通常会通过变换消去二次项,得到形如 $x^3 + px + q = 0$ 的方程(这里 $p$ 和 $q$ 是新的系数,与原始方程的系数 $a, b, c, d$ 有关)。

三次方程的求解公式,即卡尔达诺公式,可以通过以下步骤推导:

1. **Tschirnhaus转换**:通过变换 $x = y - \frac{b}{3a}$ 消去二次项,得到 $y^3 + py + q = 0$ 的形式。

2. **Cardano公式**:令 $y = u + v$,代入方程后通过比较系数得到关于 $u^3$ 和 $v^3$ 的二次方程。解这个二次方程,可以得到 $u^3$ 和 $v^3$ 的值,进而求出 $u$ 和 $v$(注意 $u$ 和 $v$ 是复数,且满足 $3uv = -p$)。最终,三次方程的解为:

   $$ x_{1,2,3} = -\frac{b}{3a} + \left( \text{三个}\sqrt[3]{-\frac{q}{2} \pm \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} \text{的根,分别记为}\omega^0, \omega^1, \omega^2 \right) $$

   其中,$\omega$ 是三次单位根,即 $\omega = \frac{-1 + \sqrt{3}i}{2}$,满足 $\omega^3 = 1$。

### 四次方程的求解公式

四次方程的一般形式为:

$$ x^4 + cx^2 + dx + e = 0 $$

(注意这里为了简化,已经通过变换消去了三次项和一次项中的 $x^3$ 和 $x$ 项。实际上,任何四次方程都可以通过适当的变换转化为这种形式。)

四次方程的求解公式相对复杂,通常涉及到一个三次辅助方程的求解。这里只给出一种简化的表述形式:

设 $\Psi_1, \Psi_2, \Psi_3$ 是与四次方程根相关的某些对称多项式的根(具体形式较为复杂,通常不直接给出),则四次方程的解可以通过以下公式表示:

$$ x_1 = \frac{\Psi_1 + \Psi_2 + \Psi_3}{4}, \quad x_2 = \frac{-\Psi_1 - \Psi_2 + \Psi_3}{4}, \quad x_3 = \frac{\Psi_1 - \Psi_2 - \Psi_3}{4}, \quad x_4 = \frac{-\Psi_1 + \Psi_2 - \Psi_3}{4} $$

然而,实际上 $\Psi_1, \Psi_2, \Psi_3$ 的求解需要借助一个三次辅助方程,该方程的解与四次方程的系数 $c, d, e$ 有关。这个三次方程通常是通过预解式法或费拉里方法得到的,其求解过程相对复杂,且可能涉及复数根。

需要注意的是,由于四次方程的求解公式过于复杂,且在实际应用中可能不如数值方法方便,因此在实际问题中,人们往往更倾向于使用数值方法(如牛顿迭代法、二分法等)来求解四次方程。
        我们已经探讨了二次、三次和四次方程的求解方法,这些方程的根式解公式为我们提供了求解的明确路径。然而,当方程的次数上升到5次及以上时,情况就变得复杂而深刻了。今天,我们将一起走进这段数学史上的重要篇章,探讨5次及以上方程的求解问题,特别是阿贝尔和伽罗华的工作如何改变了我们对代数方程的理解。

**五、历史转折点:阿贝尔与伽罗华的贡献**

在19世纪之前,数学家们一直试图找到高于四次方程的根式解公式,但始终未能如愿。直到挪威数学家尼尔斯·亨利克·阿贝尔的出现,这一局面才被彻底打破。阿贝尔在深入研究代数方程的过程中,发现了五次及更高次方程的一个根本性难题:它们不存在用根式表示的通解。这一发现震惊了当时的数学界,因为它意味着数学家们长久以来的努力方向可能是错误的。

然而,阿贝尔的证明过程相当复杂且难以被广泛理解。幸运的是,几乎在同一时期,另一位法国数学家埃瓦里斯特·伽罗华提出了一个全新的理论框架——伽罗华理论,这一理论不仅简化了阿贝尔的证明,还深刻地揭示了代数方程可解性的本质。伽罗华的工作不仅解决了代数方程求解的难题,还为代数学乃至整个数学领域带来了革命性的变化。

**六、Galois的突破:伽罗华理论**

伽罗华理论的核心在于引入了群和域的概念,通过研究方程根之间的置换关系(即根的排列组合方式)来判断方程是否可解。伽罗华发现,如果一个方程的根可以被一个可解群(即一个具有特殊性质的群)的置换所表示,那么这个方程就是可解的;反之,则不可解。这一发现为代数方程的求解问题提供了一个全新的视角和判断标准。

伽罗华理论的另一个重要贡献是揭示了数学各个分支之间的内在联系。他的工作不仅解决了代数方程的求解问题,还促进了群论、域论等数学分支的发展,为现代数学的发展奠定了坚实的基础。

**七、案例分析:一个具体的高次方程**

为了更直观地说明伽罗华理论的重要性,我们可以简要分析一个具体的高次方程,比如五次方程 $x^5 - x + 1 = 0$。这个方程没有已知的根式解公式,因此我们需要借助数值方法或其他技巧来求解。然而,更重要的是,我们可以利用伽罗华理论来判断这个方程是否可解。通过计算该方程根的置换群,我们可以发现这个群不是可解群,因此该方程不存在用根式表示的通解。

这个案例不仅展示了伽罗华理论的实际应用,还揭示了代数方程求解问题的复杂性。它告诉我们,并不是所有的代数方程都可以用简单的根式解公式来求解,有些方程可能需要我们采用更复杂的数学工具和方法来应对。
        通过今天的学习,我们了解了5次及以上方程的求解问题以及阿贝尔和伽罗华的重要贡献。他们的工作不仅解决了代数方程求解的难题,还为数学的发展开辟了新的道路。希望大家能够从中汲取灵感和力量,继续在数学的海洋中探索未知、追求真理。接下来我们简单了解以下本课程中的一些核心概念


**八、抽象代数的核心概念**

**(一)群的概念**
    群的概念起源于对对称性的研究,特别是在几何作图中的应用。想象一下,当我们用尺子和圆规作图时,我们实际上是在进行一系列的对称变换,如旋转、平移和反射。这些变换之间存在一定的规律,它们可以组合、逆转,并且保持某种不变性。正是这种不变性促使了群的概念的诞生。

**定义与性质**:

群是一个集合G,它包含了一个二元运算(我们常称之为乘法,但不必真的是数的乘法),这个运算满足以下四个基本性质:

1. **封闭性**:对于G中的任意两个元素a和b,它们的乘积(即运算结果)c也属于G。
2. **结合律**:对于G中的任意三个元素a、b和c,(a*b)*c = a*(b*c)。
3. **单位元**:G中存在一个元素e,使得对于G中的任意元素a,都有e*a = a*e = a。
4. **逆元**:对于G中的任意元素a,都存在一个元素a',使得a*a' = a'*a = e。

群的示例有很多,比如整数集在加法下形成的群、非零实数集在乘法下形成的群等。这些例子不仅帮助我们理解群的定义,还展示了群在日常生活和科学研究中的广泛应用。

**作用与联系**:

群的概念在多项式方程求解中扮演着至关重要的角色。特别是当我们学习Galois理论时,会发现群与多项式方程的根之间存在着深刻的联系。Galois理论通过研究多项式方程的根的置换群(即Galois群),揭示了方程是否可解以及解的性质。因此,理解群的概念是我们后续学习Galois理论的基础。

**(二)域的概念**

**定义与性质**:

接下来,我们进入另一个重要的概念——域。域是一个集合F,它包含两个二元运算:加法和乘法。这两个运算满足以下性质:

1. **加法与乘法的封闭性**:F中的任意两个元素在加法和乘法下得到的结果仍然在F中。
2. **加法与乘法的交换律**:对于F中的任意两个元素a和b,都有a+b=b+a和a*b=b*a。
3. **加法与乘法的结合律**:对于F中的任意三个元素a、b和c,(a+b)+c=a+(b+c)和(a*b)*c=a*(b*c)。
4. **分配律**:对于F中的任意三个元素a、b和c,都有a*(b+c)=a*b+a*c。
5. **单位元**:F中存在加法单位元0和乘法单位元1(通常不等于0),使得对于F中的任意元素a,都有a+0=a和a*1=a。
6. **逆元**:对于F中的任意非零元素a,都存在一个加法逆元-a和一个乘法逆元a^-1(如果乘法是可逆的),使得a+(-a)=0和a*a^-1=1。

**代数闭域**:

特别地,如果一个域F中的每一个多项式方程都在F中有根,则称F为代数闭域。代数闭域在代数几何和数论等领域中具有重要意义,因为它们保证了多项式方程的解的存在性和唯一性。

**(三)Galois理论**

**核心概念**:

现在,我们进入本节课的核心内容——Galois理论。Galois理论是代数学中的一个重要分支,它通过建立多项式方程的根与群之间的对应关系,揭示了多项式方程的可解性。核心概念包括Galois群和Galois扩张。

- **Galois群**:对于一个给定的多项式方程,其Galois群是由该方程根的所有可能置换组成的群。这些置换在保持方程系数不变的情况下,重新排列方程的根。
- **Galois扩张**:如果域E是域F的扩张,并且E是F上某个多项式方程的分裂域,那么称E/F为Galois扩张。在Galois扩张中,E和F之间的中间域与Galois群之间存在着一一对应的关系。

**Galois定理及其推论**:

Galois定理是Galois理论的核心结果之一,它给出了多项式方程可解性的充分必要条件:一个多项式方程在给定域上可解当且仅当其Galois群是可解的。这一定理不仅解决了长期困扰数学家们。

作业布置:找多个3,4次代数方程求解感受求解的原理。

  • 20
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值