导数相关内容证明

导数的话,六年级就学了,那些初等函数的导数大部分证明也是那个时候就自己证出来了,但对数函数和指数函数一直是证不出来,到了初一,高数学到 P 82 P82 P82的时候才了解到(并且发现对三角函数的证明有点假)。这些东西从初一到现在高二,总有人问我怎么证,我干脆直接这里完完整整全都写下来好了。

1.两函数乘积的导数

( f ( x ) ⋅ g ( x ) ) ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) (f(x)\cdot g(x))'=f'(x)g(x)+f(x)g'(x) (f(x)g(x))=f(x)g(x)+f(x)g(x)

( f ( x ) ⋅ g ( x ) ) ′ − f ′ ( x ) g ( x ) (f(x)\cdot g(x))'-f'(x)g(x) (f(x)g(x))f(x)g(x)
= lim ⁡ Δ x → 0 f ( x + Δ x ) ⋅ ( g ( x + Δ x ) − g ( x ) ) Δ x =\lim_{\Delta x\to0}\frac{f(x+\Delta x)\cdot(g(x+\Delta x)-g(x))}{\Delta x} =limΔx0Δxf(x+Δx)(g(x+Δx)g(x))
= lim ⁡ Δ x → 0 f ( x + Δ x ) ⋅ g ′ ( x ) =\lim_{\Delta x\to 0}f(x+\Delta x)\cdot g'(x) =limΔx0f(x+Δx)g(x)
= f ( x ) g ′ ( x ) =f(x)g'(x) =f(x)g(x)

2.复合函数求导

( f ( g ( x ) ) ) ′ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) (f(g(x)))'=f'(g(x))\cdot g'(x) (f(g(x)))=f(g(x))g(x)

本来直接 d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} dxdy=dudydxdu就好了,但我还是完整写下吧
( f ( g ( x ) ) ) ′ = lim ⁡ Δ x → 0 f ( g ( x + Δ x ) ) − f ( g ( x ) ) Δ x (f(g(x)))'=\lim_{\Delta x\to0}\frac{f(g(x+\Delta x))-f(g(x))}{\Delta x} (f(g(x)))=limΔx0Δxf(g(x+Δx))f(g(x))
= lim ⁡ Δ x → 0 f ( g ( x ) + g ′ ( x ) ⋅ Δ x ) − f ( g ( x ) ) Δ x =\lim_{\Delta x\to0}\frac{f(g(x)+g'(x)\cdot\Delta x)-f(g(x))}{\Delta x} =limΔx0Δxf(g(x)+g(x)Δx)f(g(x))
= f ′ ( g ( x ) ) ⋅ g ′ ( x ) =f'(g(x))\cdot g'(x) =f(g(x))g(x)

3.sinx/x在x趋于0时的极限

lim ⁡ x → 0 s i n x x = 1 \lim_{x\to0}\frac{sinx}{x}=1 limx0xsinx=1

通过单位圆易得 c o s x < s i n x x < 1 ( − π 2 < x < π 2 ) cosx<\frac{sinx}{x}<1(-\frac{π}{2}<x<\frac{π}{2}) cosx<xsinx<1(2π<x<2π)
因为 lim ⁡ x → 0 c o s x = 1 \lim_{x\to0}cosx=1 limx0cosx=1,又由夹逼定理,可得结论

4.正弦函数求导

( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx
要用到结论3
( s i n x ) ′ = lim ⁡ Δ x → 0 s i n ( x + Δ x ) − s i n x Δ x (sinx)'=\lim_{\Delta x\to0}\frac{sin(x+\Delta x)-sinx}{\Delta x} (sinx)=limΔx0Δxsin(x+Δx)sinx
= lim ⁡ Δ x → 0 c o s ( x + Δ x / 2 ) s i n ( Δ x / 2 ) Δ x / 2 =\lim_{\Delta x\to 0}\frac{cos(x+\Delta x/2)sin(\Delta x/2)}{\Delta x/2} =limΔx0Δx/2cos(x+Δx/2)sin(Δx/2)
= c o s x =cosx =cosx

5.对数函数求导

( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1
( l o g a x ) ′ = lim ⁡ Δ x → 0 l o g a ( 1 + Δ x x ) 1 Δ x (log_ax)'=\lim_{\Delta x\to0}log_a(1+\frac{\Delta x}{x})^{\frac{1}{\Delta x}} (logax)=limΔx0loga(1+xΔx)Δx1
t = x Δ x t=\frac{x}{\Delta x} t=Δxx
原式 = lim ⁡ Δ x → 0 l o g a ( 1 + 1 t ) t x =\lim_{\Delta x\to0}log_a(1+\frac{1}{t})^{\frac{t}{x}} =limΔx0loga(1+t1)xt
∵ t → + ∞ ∵t\to+\infty t+
∴ ∴ 原式 = 1 x l o g a e = 1 x l n a =\frac{1}{x}log_ae=\frac{1}{xlna} =x1logae=xlna1

6.指数函数求导

( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna

隐函数求导下就好了,要用到结论2,5
y = a x y=a^x y=ax
两边取对数: l n y = x l n a lny=xlna lny=xlna
两边求导: 1 y y ′ = l n a \frac{1}{y}y'=lna y1y=lna
y ′ = y l n a = a x l n a y'=ylna=a^xlna y=ylna=axlna

7.牛顿-莱布尼茨公式

∫ a b f ′ ( x ) d x = f ( b ) − f ( a ) \int_a^bf'(x)dx=f(b)-f(a) abf(x)dx=f(b)f(a)
Φ ( x ) = ∫ a x f ′ ( t ) d t \Phi(x)=\int_a^xf'(t)dt Φ(x)=axf(t)dt
Φ ′ ( x ) = ∫ x x + Δ x f ′ ( t ) d t Δ x \Phi'(x)=\frac{\int_x^{x+\Delta x}f'(t)dt}{\Delta x} Φ(x)=Δxxx+Δxf(t)dt
根据积分中值定理
Φ ′ ( x ) = f ′ ( ξ ) ( x ≤ ξ ≤ x + Δ x ) \Phi'(x)=f'(\xi)(x≤\xi≤x+\Delta x) Φ(x)=f(ξ)(xξx+Δx)
因为 Δ x → 0 \Delta x\to0 Δx0,所以 Φ ′ ( x ) = f ′ ( x ) \Phi'(x)=f'(x) Φ(x)=f(x)
Φ ( x ) = f ( x ) + C \Phi(x)=f(x)+C Φ(x)=f(x)+C
那么 Φ ( b ) − Φ ( a ) = f ( b ) − f ( a ) \Phi(b)-\Phi(a)=f(b)-f(a) Φ(b)Φ(a)=f(b)f(a)

8.Taylor公式

f ( x ) = ∑ n = 0 + ∞ f ( n ) ( x 0 ) ( x − x 0 ) n n ! f(x)=\sum_{n=0}^{+\infty}\frac{f^{(n)}(x_0)(x-x_0)^n}{n!} f(x)=n=0+n!f(n)(x0)(xx0)n
我们考虑用 P ( x ) = ∑ n = 0 + ∞ a n ( x − x 0 ) n P(x)=\sum_{n=0}^{+\infty}a_n(x-x_0)^n P(x)=n=0+an(xx0)n近似地表示 f ( x ) f(x) f(x)
因为 f ( x 0 ) = P ( x 0 ) f(x_0)=P(x_0) f(x0)=P(x0) f ′ ( x 0 ) = P ′ ( x 0 ) f'(x_0)=P'(x_0) f(x0)=P(x0) f ′ ′ ( x 0 ) = P ′ ′ ( x 0 ) . . . f''(x_0)=P''(x_0)... f(x0)=P(x0)...
可得 a n = f ( n ) ( x 0 ) n ! a_n=\frac{f^{(n)}(x_0)}{n!} an=n!f(n)(x0),这个 n ! n! n! ( x − x 0 ) n (x-x_0)^n (xx0)n求导求出来的系数,自己手算下就知道了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值