题解:
f[i][j][t][p]表示当前是p在走,走到(i,j)这格两人魔瓶内的魔液的差的绝对值为t的方案数
初值:f[i][j][x][0]=1,x为当前这个的魔液数量
状态转移方程:
f[i][j][t][0]+=f[i-1][j][(t-x+k)%k][1]+f[i][j-1][(t-x+k)%k][1]
f[i][j][t][1]+=f[i-1][j][(t+x)%k][0]+f[i][j-1][(t+x)%k][0]
标程:
#include<bits/stdc++.h>
using namespace std;
const int M=1000000007;
int n,m,k,i,j,t,x,ans,f[802][802][18][2];
int main(){
cin>>n>>m>>k;
k++;
for (i=1;i<=n;i++)
for (j=1;j<=m;j++){
scanf("%d",&x);
f[i][j][x%k][0]=1;
for (t=0;t<k;t++){
f[i][j][t][0]=((f[i][j][t][0]+f[i-1][j][(t-x+k)%k][1])%M+f[i][j-1][(t-x+k)%k][1])%M;
f[i][j][t][1]=((f[i][j][t][1]+f[i-1][j][(t+x)%k][0])%M+f[i][j-1][(t+x)%k][0])%M;
}
}
for (i=1;i<=n;i++)
for (j=1;j<=m;j++) ans=(ans+f[i][j][0][1])%M;
cout<<ans;
}