算法
飞羽逐星
既然厌倦于追寻,那便一觅其中;自从一股逆风袭来,我已学会抵挡八面来风。
展开
-
前端算法总结(四)—树形结构
树形结构一、树1、概念2、实现二、二叉树1、概念2、遍历3、遍历实现1.树的实现2.前序遍历3.中序遍历4.后序遍历3、前序、中序确定二叉树4、二叉树的深度5、查询二叉树一、树1、概念下面就是一颗很常见的树:2、实现function Tree(value) { this.value = value; this.children = [];}const A = new Tree("A");const B = new Tree("B");const C = new Tree("C原创 2020-12-27 22:35:45 · 2304 阅读 · 0 评论 -
前端算法总结(三)—链表实现
链表实现一、链表1、链表实现2、链表遍历3、链表长度4、链表节点查询5、设置链表节点值一、链表1、链表实现 function List(value){ this.value = value; this.next = null; }//构造函数 const Node1 = new List(1); const Node2 = new List(3); const Node3 = new List(5); Node1.next = No原创 2020-12-20 10:59:40 · 589 阅读 · 0 评论 -
前端算法总结(二)—《我的第一本算法书》
前端算法总结一、前端算法总结1、排序1.冒泡排序2.选择排序3.插入排序4.归并算法一、前端算法总结1、排序1.冒泡排序冒泡排序就是重复“从序列右边开始比较相邻两个数字的大小,再根据结果交换两个数字的位置”这一操作的算法。在这个过程中,数字会像泡泡一样,慢慢从右往左“浮”到序列的顶端,所以这个算法才被称为“冒泡排序”。第一轮,索引 len 和 len-1 比较,接着 len-1 和 len-2 比较,…直到索引 1 和 0 比较,比较了 len -2 次。第二轮,索引 len 和 len-1原创 2020-12-14 11:24:03 · 707 阅读 · 0 评论 -
前端算法总结(一)—《我的第一本算法书》
前端算法总结一、前端算法总结1、基本知识:时间复杂度2、数据结构1.链表2.数组3.栈4.队列5.哈希表6.堆7.二叉查找树一、前端算法总结1、基本知识:时间复杂度假设某个算法的运行时间如下。那么,这个结果就可以用 O(n^3) 来表示。如果运行时间为:这个结果就可以用 O(nlogn) 来表示。O 这个符号的意思是“忽略重要项以外的内容”,读音同 Order。O(n^2) 的含义就是“算法的运行时间最长也就是 n^2 的常数倍”,准确的定义请参考相关专业书籍。重点在于,通过这种表示方法,我原创 2020-12-11 10:14:41 · 548 阅读 · 1 评论