输入n个数,输出最小的k个数,java实现

package bianchengart;


import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;


/**
 *题目:输入n个数,输出最小的k个数
 * 思路一:(1)遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设它们即是最小的k个数.
 * (2)对着k个数,利用选择或交换排序找到这k个元素中的最大值kmax(找最大值需要遍历这k个数,时间复杂度为o(k)).
 * (3)继续遍历剩余的n-k个数。假设每一次遍历到的新的元素的值为x,把x与kmax比较:如果x<kmax,则用x替换kmax,并回到第二步重新找出k个元素的数组中最大元素kmax;如果x>=kmax,则继续遍历不更新数组。
 * 每次遍历,更新或不更新数组的所用时间为o(k)或o(0).故整趟下来,时间复杂度为n*o(k)=o(n*k)
 * 思路二:1、用容量为k的最大堆存储最先遍历到的k个数,同样假设它们即是最小的k个数;
 * 2、堆中元素是有序的,令k1<k2<...<kmax(kmax设为最大堆中的最大元素)
 * 3、遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与堆顶元素kmax比较:如果x < kmax,用x替换kmax,然后更新堆(用时logk);否则不更新堆。
 * 这样下来,总的时间复杂度:O(k+(n-k)*logk)=O(n*logk)。此方法得益于堆中进行查找和更新的时间复杂度均为:O(logk)(若使用解法二:在数组中找出最大元素,时间复杂度:O(k))。
 * @author Administrator
 */
public class SearchMinKNumber {
    //思路一:
    
    //寻找最大的数
    public int selectionMax(ArrayList<Integer> arrList){
        int mid=0;
        int sub=0;
        
        for(int i=0;i<arrList.size();i++){
            if (arrList.get(sub)<arrList.get(i)) {
                mid=arrList.get(sub);
                arrList.set(sub, arrList.get(i));
                arrList.set(i, mid);
                //mid=arrList.get(sub);
            }
        }
        return arrList.get(sub);
    }
    
    public static void main(String[] args) {
        Scanner s=new Scanner(System.in);
        String s1=s.nextLine();
        String[] ses=s1.split(" ");
        int[] gint=new int[ses.length];
        for(int i=0;i<ses.length;i++){
            gint[i]=Integer.parseInt(ses[i]);

        }

//把最先遍历的k个数放入到数组中gk中
        for (int i = 0; i < k; i++) {
            gk[i]=gint[i];
        }
        //将gk中的元素选出最大的哪个
        selectionMax(gk);
        for (int i = k; i < gint.length; i++) {
            if (selectionMax(gk)>gint[i]) {
                gk[0]=gint[i];
                selectionMax(gk);
            }
        }
        //输出最小的k个数
        System.out.println("输出最小的k个数:");
        for(int i=0;i<k;i++){
            System.out.println(gk[i]);
        }

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值