package bianchengart;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
*题目:输入n个数,输出最小的k个数
* 思路一:(1)遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设它们即是最小的k个数.
* (2)对着k个数,利用选择或交换排序找到这k个元素中的最大值kmax(找最大值需要遍历这k个数,时间复杂度为o(k)).
* (3)继续遍历剩余的n-k个数。假设每一次遍历到的新的元素的值为x,把x与kmax比较:如果x<kmax,则用x替换kmax,并回到第二步重新找出k个元素的数组中最大元素kmax;如果x>=kmax,则继续遍历不更新数组。
* 每次遍历,更新或不更新数组的所用时间为o(k)或o(0).故整趟下来,时间复杂度为n*o(k)=o(n*k)
* 思路二:1、用容量为k的最大堆存储最先遍历到的k个数,同样假设它们即是最小的k个数;
* 2、堆中元素是有序的,令k1<k2<...<kmax(kmax设为最大堆中的最大元素)
* 3、遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与堆顶元素kmax比较:如果x < kmax,用x替换kmax,然后更新堆(用时logk);否则不更新堆。
* 这样下来,总的时间复杂度:O(k+(n-k)*logk)=O(n*logk)。此方法得益于堆中进行查找和更新的时间复杂度均为:O(logk)(若使用解法二:在数组中找出最大元素,时间复杂度:O(k))。
* @author Administrator
*/
public class SearchMinKNumber {
//思路一:
//寻找最大的数
public int selectionMax(ArrayList<Integer> arrList){
int mid=0;
int sub=0;
for(int i=0;i<arrList.size();i++){
if (arrList.get(sub)<arrList.get(i)) {
mid=arrList.get(sub);
arrList.set(sub, arrList.get(i));
arrList.set(i, mid);
//mid=arrList.get(sub);
}
}
return arrList.get(sub);
}
public static void main(String[] args) {
Scanner s=new Scanner(System.in);
String s1=s.nextLine();
String[] ses=s1.split(" ");
int[] gint=new int[ses.length];
for(int i=0;i<ses.length;i++){
gint[i]=Integer.parseInt(ses[i]);
}
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
*题目:输入n个数,输出最小的k个数
* 思路一:(1)遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设它们即是最小的k个数.
* (2)对着k个数,利用选择或交换排序找到这k个元素中的最大值kmax(找最大值需要遍历这k个数,时间复杂度为o(k)).
* (3)继续遍历剩余的n-k个数。假设每一次遍历到的新的元素的值为x,把x与kmax比较:如果x<kmax,则用x替换kmax,并回到第二步重新找出k个元素的数组中最大元素kmax;如果x>=kmax,则继续遍历不更新数组。
* 每次遍历,更新或不更新数组的所用时间为o(k)或o(0).故整趟下来,时间复杂度为n*o(k)=o(n*k)
* 思路二:1、用容量为k的最大堆存储最先遍历到的k个数,同样假设它们即是最小的k个数;
* 2、堆中元素是有序的,令k1<k2<...<kmax(kmax设为最大堆中的最大元素)
* 3、遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与堆顶元素kmax比较:如果x < kmax,用x替换kmax,然后更新堆(用时logk);否则不更新堆。
* 这样下来,总的时间复杂度:O(k+(n-k)*logk)=O(n*logk)。此方法得益于堆中进行查找和更新的时间复杂度均为:O(logk)(若使用解法二:在数组中找出最大元素,时间复杂度:O(k))。
* @author Administrator
*/
public class SearchMinKNumber {
//思路一:
//寻找最大的数
public int selectionMax(ArrayList<Integer> arrList){
int mid=0;
int sub=0;
for(int i=0;i<arrList.size();i++){
if (arrList.get(sub)<arrList.get(i)) {
mid=arrList.get(sub);
arrList.set(sub, arrList.get(i));
arrList.set(i, mid);
//mid=arrList.get(sub);
}
}
return arrList.get(sub);
}
public static void main(String[] args) {
Scanner s=new Scanner(System.in);
String s1=s.nextLine();
String[] ses=s1.split(" ");
int[] gint=new int[ses.length];
for(int i=0;i<ses.length;i++){
gint[i]=Integer.parseInt(ses[i]);
}
//把最先遍历的k个数放入到数组中gk中
for (int i = 0; i < k; i++) {
gk[i]=gint[i];
}
//将gk中的元素选出最大的哪个
selectionMax(gk);
for (int i = k; i < gint.length; i++) {
if (selectionMax(gk)>gint[i]) {
gk[0]=gint[i];
selectionMax(gk);
}
}
//输出最小的k个数
System.out.println("输出最小的k个数:");
for(int i=0;i<k;i++){
System.out.println(gk[i]);
}
}