TensorFlow:多层感知器解决异或问题

import numpy as np
import tensorflow as tf
data_x=np.array([[0,0],[0,1],[1,0],[1,1]],dtype=np.float32)
data_y=np.array([[0],[1],[1],[0]],dtype=np.float32)

x=tf.placeholder(tf.float32,shape=[None,2],name='input')
w1=tf.Variable(tf.random_uniform([2,4],-1,1),name='w1')
b1=tf.Variable(tf.zeros(4,dtype=np.float32),name='b1')
w2=tf.Variable(tf.random_uniform([4,1],-1,1),name='w2')
b2=tf.Variable(tf.zeros(1,dtype=np.float32),name='b2')

z1=tf.sigmoid(tf.matmul(x,w1)+b1)
z2=tf.sigmoid(tf.matmul(z1,w2)+b2)

y=tf.placeholder(tf.float32,shape=[None,1],name='output')

loss=tf.nn.l2_loss(z2-y)
opt=tf.train.GradientDescentOptimizer(0.05)
train_op=opt.minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(100000):
        loss_val,_=sess.run([loss,train_op],feed_dict={x:data_x,y:data_y})
        if i%10000==0:
            print('{}:loss={}'.format(i,loss_val))
    graph=tf.get_default_graph()
    print(graph)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值