import numpy as np
import tensorflow as tf
data_x=np.array([[0,0],[0,1],[1,0],[1,1]],dtype=np.float32)
data_y=np.array([[0],[1],[1],[0]],dtype=np.float32)
x=tf.placeholder(tf.float32,shape=[None,2],name='input')
w1=tf.Variable(tf.random_uniform([2,4],-1,1),name='w1')
b1=tf.Variable(tf.zeros(4,dtype=np.float32),name='b1')
w2=tf.Variable(tf.random_uniform([4,1],-1,1),name='w2')
b2=tf.Variable(tf.zeros(1,dtype=np.float32),name='b2')
z1=tf.sigmoid(tf.matmul(x,w1)+b1)
z2=tf.sigmoid(tf.matmul(z1,w2)+b2)
y=tf.placeholder(tf.float32,shape=[None,1],name='output')
loss=tf.nn.l2_loss(z2-y)
opt=tf.train.GradientDescentOptimizer(0.05)
train_op=opt.minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(100000):
loss_val,_=sess.run([loss,train_op],feed_dict={x:data_x,y:data_y})
if i%10000==0:
print('{}:loss={}'.format(i,loss_val))
graph=tf.get_default_graph()
print(graph)
TensorFlow:多层感知器解决异或问题
最新推荐文章于 2024-09-13 06:06:42 发布