缓存穿透
先说下什么叫缓存穿透
大量并发查询不存在的 KEY,在缓存和数据库中都不存在,同时给缓存和数据库带来压力,这就是缓存穿透。
产生原因
一般而言,缓存穿透的传声有 2 种可能性:业务数据被误删,导致缓存和数据库中都没有数据,还有一种就是恶意进行 ddos 攻击。
解决方式
缓存空值的 KEY,这样第一次不存在也会被加载会记录,下次拿到有这个KEY。Bloom 过滤或 RoaingBitmap 判断 KEY 是否存在,如果布隆过滤器中没有查到这个数据,就不去数据库中查。在处理请求前增加恶意请求检查,如果检测到是恶意攻击,则拒绝进行服务。完全以缓存为准,使用延迟异步加载的策略(异步线程负责维护缓存的数据,定期或根据条件触发更新),这样就不会触发更新。
缓存击穿
什么叫缓存击穿
某个 KEY 失效的时候,正好有大量并发请求访问这个 KEY,这时就会直接访问到数据库,就叫做缓存击穿
产生原因
当Key失效时,大量请求访问。
解决方法
比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。使用这个方案的话可以保证数据的一致性,但是会增加代码的复杂度,会出现死锁的风险以及线程池阻塞风险。
还有可以将热点数据设置为永不过期;还可以实现熔断限流机制,比如hystrix,来实现。
缓存雪崩
什么叫缓存雪崩
当某一时刻发生大规模的缓存失效的情况,导致大量的请求无法获取数据,从而将流量压力传导到数据库上,导致数据库压力过大甚至宕机。
产生原因
一般而言,缓存雪崩有 2 种可能性:大量的数据同一个时间失效:比如业务关系强相关的数据要求同时失效或者Redis 宕机
解决方法
更新策略在时间上做到比较平均。如果数据需要同一时间失效,可以给这批数据加上一些随机值,使得这批数据不要在同一个时间过期,降低数据库的压力。
使用的热数据尽量分散到不同的机器上。多台机器做主从复制或者多副本,实现高可用。做好主从的部署,当主节点挂掉后,能快速的使用从结点顶上。
实现熔断限流机制,对系统进行负载能力控制。对于非核心功能的业务,拒绝其请求,只允许核心功能业务访问数据库获取数据。
服务降级:提供默认返回值,或简单的提示信息。
总结
这3个问题的最终原因就是访问的数据在缓存中不存在,导致直接对数据库进行了访问,对数据库造成了压力,从而影响到整个系统的性能。而这个访问数据为什么不存在,以及同一时间并发请求的数据量是对这3个问题的区分。
缓存穿透是因为要访问的数据原本就不存在,而缓存击穿是该数据原本存在于缓存,只是在访问的时候失效了,只能去数据库访问了;而缓存雪崩,就是在缓存击穿的基础上,大量的Key同时失效,并且同时出现大量的并发请求,从而将流量压力给到了数据库。
本文详细解释了缓存穿透、缓存击穿及缓存雪崩的概念、产生原因及解决方案,帮助读者理解如何有效避免这些常见问题,保障系统的稳定运行。
738

被折叠的 条评论
为什么被折叠?



