题目及测试
package pid162;
/*寻找峰值
峰值元素是指其值大于左右相邻值的元素。
给定一个输入数组 nums,其中 nums[i] ≠ nums[i+1],找到峰值元素并返回其索引。
数组可能包含多个峰值,在这种情况下,返回任何一个峰值所在位置即可。
你可以假设 nums[-1] = nums[n] = -∞。
示例 1:
输入: nums = [1,2,3,1]
输出: 2
解释: 3 是峰值元素,你的函数应该返回其索引 2。
示例 2:
输入: nums = [1,2,1,3,5,6,4]
输出: 1 或 5
解释: 你的函数可以返回索引 1,其峰值元素为 2;
或者返回索引 5, 其峰值元素为 6。
说明:
你的解法应该是 O(logN) 时间复杂度的。
*/
public class main {
public static void main(String[] args) {
int[][] testTable = {{1,2,3,1},{1,2,1,3,5,6,4},{1,2},{3,2,1,5,6,4}};
for (int[] ito : testTable) {
test(ito);
}
}
private static void test(int[] ito) {
Solution solution = new Solution();
int rtn;
long begin = System.currentTimeMillis();
for (int i = 0; i < ito.length; i++) {
System.out.print(ito[i]+" ");
}
System.out.println();
//开始时打印数组
rtn = solution.findPeakElement(ito);//执行程序
long end = System.currentTimeMillis();
//System.out.println(ito + ": rtn=" + rtn);
System.out.println(": rtn=" +rtn);
System.out.println();
System.out.println("耗时:" + (end - begin) + "ms");
System.out.println("-------------------");
}
}
解法1(成功,3ms,极快)
直接顺序查找,看now>prev&&now>next即可
package pid162;
import java.util.Arrays;
import javax.naming.InitialContext;
public class Solution {
public int findPeakElement(int[] nums) {
int length=nums.length;
if(length==1){
return 0;
}
int prev=nums[0];
int now=nums[1];
int next;
int index=0;
for(int i=1;i<length-1;i++){
next=nums[i+1];
if(now>prev&&now>next){
index=i;
break;
}
prev=now;
now=next;
}
if(nums[0]>nums[1]){
index=0;
}
if(nums[length-1]>nums[length-2]){
index=length-1;
}
return index;
}
}
解法2(别人的)
在简单的二分查找中,我们处理的是一个有序数列,并通过在每一步减少搜索空间来找到所需要的数字。在本例中,我们对二分查找进行一点修改。首先从数组 nums 中找到中间的元素 mid。若该元素恰好位于降序序列或者一个局部下降坡度中(通过将 nums[i] 与右侧比较判断),则说明峰值会在本元素的左边。于是,我们将搜索空间缩小为 mid的左边(包括其本身),并在左侧子数组上重复上述过程。
若该元素恰好位于升序序列或者一个局部上升坡度中(通过将 nums[i]与右侧比较判断),则说明峰值会在本元素的右边。于是,我们将搜索空间缩小为 mid的右边,并在右侧子数组上重复上述过程。
就这样,我们不断地缩小搜索空间,直到搜索空间中只有一个元素,该元素即为峰值元素。
最左端和最右端元素均无限小,中间元素比两侧都要大,那么本题中一定存在一个峰元素。所以不管中间有多少波峰,只要找到峰元素,我们只需找到刚刚开始下降而未下降的位置。采用二分查找,查出这样一个位置即可,我们知道二分查找要比较的是 target 元素,本题的 target 元素是 mid 的后一个元素,即 nums[mid] 与 nums[mid+1] 进行比较:
public class Solution {
public int findPeakElement(int[] nums) {
int left = 0, right = nums.length - 1;
while (left < right) {
int mid = (left + right) / 2;
if(nums[mid] < nums[mid + 1]) left = mid + 1;
else right = mid;
}
return left;
}
}