leetcode-240-搜索二维矩阵 II(search a 2ds matrix 2)-java

题目及测试

package pid240;
/* 搜索二维矩阵 II

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target。该矩阵具有以下特性:

    每行的元素从左到右升序排列。
    每列的元素从上到下升序排列。

示例:

现有矩阵 matrix 如下:

[
  [1,   4,  7, 11, 15],
  [2,   5,  8, 12, 19],
  [3,   6,  9, 16, 22],
  [10, 13, 14, 17, 24],
  [18, 21, 23, 26, 30]
]

给定 target = 5,返回 true。

给定 target = 20,返回 false。



*/
public class main {
	
	public static void main(String[] args) {
		int[][] testTable = {{1,   4,  7, 11, 15},{2,   5,  8, 12, 19},
				{3,   6,  9, 16, 22},{10, 13, 14, 17, 24},{18, 21, 23, 26, 30}};
		int[] testTable2=new int[]{5,20};
		for(int i=0;i<testTable2.length;i++){
			test(testTable,testTable2[i]);
		}
		
	}
		 
	private static void test(int[][] ito,int ito2) {
		Solution solution = new Solution();
		long begin = System.currentTimeMillis();
		System.out.println("ito= ");
		for(int i=0;i<ito.length;i++){
			for(int j=0;j<ito[i].length;j++){
			System.out.print(ito[i][j]+" ");
			}
			System.out.println();
		}
		System.out.println();
		System.out.println("ito2= "+ito2);
		boolean rtn;
		rtn=solution.searchMatrix(ito,ito2);//执行程序
		long end = System.currentTimeMillis();		
		System.out.println("rtn="+rtn);
		System.out.println();
		System.out.println("耗时:" + (end - begin) + "ms");
		System.out.println("-------------------");
	}

}

解法1(成功,7ms,很快)

从矩阵的正对角线的两端,他们的两个方向都是都变大或变小,从反对角线的两端,方向是一个变大,一个变小,就可以根据大小,向相应的方向跑过去,直到遇到或者超出矩阵的边界

首先判断(rows-1,0)处的元素,记为x,如果给定的target>x,则延行方向向右寻找,否则延列方向向上寻找。

    public boolean searchMatrix(int[][] matrix, int target) {
        int row=matrix.length;
        if(row==0){
        	return false;
        }
        int col=matrix[0].length;
        if(col==0){
        	return false;        	
        }
        // 从左下角开始
        int i=row-1;
        int j=0;
        while(i>=0 && j<col){
        	int now=matrix[i][j];
        	if(now==target){
        		return true;
        	}
        	if(now<target){
        		j++;
        	}else{
        		i--;
        	}
        }
    	
    	return false;
    }	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值