吴恩达机器学习笔记

本文为吴恩达机器学习视频听课笔记,仅记录课程大纲及对于部分关键点、疑难点的理解。
课程链接: 吴恩达机器学习.

说明:这篇博客已经躺在草稿箱里很久了 由于整理公式等耗费大量时间 仅仅梳理了前 7章的内容 后续内容若有时间再做整理

Chapter1 绪论

本章主要介绍了机器学习的定义、算法分类及应用场景。
图1 机器学习概论

Chapter2 单变量线性回归

模型表示

  • 符号说明
项目 Value
m Number of training examples
x’s “input” variable
y’s “output” variable
(x,y) one training example
( x ( i ) x^{(i)} x(i), y ( i ) y^{(i)} y(i)) the i t h i^{th} ith training example
  • 监督学习算法工作过程
    在这里插入图片描述

  • Linear Regression Model

    h θ ( x ) = θ 0 + θ 1 x h_{θ}(x)=θ_0+θ_1x hθ(x)=θ0+θ1x

    J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \mathrm J(θ_0,θ_1)=\cfrac {1}{2m}\displaystyle\sum_{i=1}^m(h_{θ}(x^{(i)})-y^{ {(i)}})^{2} J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2

代价函数

项目 Value
假设函数 h θ ( x ) = θ 0 + θ 1 x h_{θ}(x)=θ_0+θ_1x hθ(x)=θ0+θ1x
参数 θ 0 θ_0 θ0, θ 1 θ_1 θ1
代价函数 J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \mathrm J(θ_0,θ_1)=\cfrac {1}{2m}\displaystyle\sum_{i=1}^m(h_{θ}(x^{(i)})-y^{ {(i)}})^{2} J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2
目标 m i n i m i z e J ( θ 0 , θ 1 ) {minimize} \mathrm J(θ_0,θ_1) minimizeJ(θ0,θ1)

注意:

  • 选择合适的 θ 0 θ_0 θ0,和 θ 1 θ_1 θ1使得假设函数表示的直线更好地与数据点拟合,定义为最小化问题
  • 代价函数中,系数为 1 2 \cfrac {1}{2} 21,目的是在梯度下降时便于求解

梯度下降

(一种可以自动找到使得函数J最小的参数的算法)
  1. 定义:
    repeat until convergence{
    θ j : = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) θ_j:= θ_j-α\cfrac {\partial}{\partialθ_j}\mathrm J(θ_0,θ_1) θj:=θjαθjJ(θ0,θ1)        (for j=0 and j=1)
    }
  2. 关于α(学习率)
    (1)学习率表示在控制梯度下降时,以多大的幅度更新参数(采用同时更新的方法,即 θ 0 θ_0 θ0 θ 1 θ_1 θ1同时更新)
    (2)if α is too small, gradient descent can be slow
    (3)if α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

线性回归中的梯度下降

  1. 线性回归模型

    h θ ( x ) = θ 0 + θ 1 x h_{θ}(x)=θ_0+θ_1x hθ(x)=θ0+θ1x

    J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \mathrm J(θ_0,θ_1)=\cfrac {1}{2m}\displaystyle\sum_{i=1}^m(h_{θ}(x^{(i)})-y^{ {(i)}})^{2} J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2

  2. 梯度下降算法

    repeat until convergence{
    θ j : = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) θ_j:= θ_j-α\cfrac {\partial}{\partialθ_j}\mathrm J(θ_0,θ_1) θj:=θjαθjJ(θ0,θ1)        (for j=0 and j=1)
    }

  3. Apply gradient descent to minimize squared error cost function

    求偏导:
    ∂ ∂ θ j J ( θ 0 , θ 1 ) = ∂ ∂ θ j 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 = ∂ ∂ θ j 1 2 m ∑ i = 1 m ( θ 0 + θ 1 x ( i ) − y ( i ) ) 2 \cfrac {\partial}{\partialθ_j}\mathrm J(θ_0,θ_1)=\cfrac {\partial}{\partialθ_j}\cfrac {1}{2m}\displaystyle\sum_{i=1}^m(h_{θ}(x^{(i)})-y^{ {(i)}})^{2}=\cfrac {\partial}{\partialθ_j}\cfrac {1}{2m}\displaystyle\sum_{i=1}^m(θ_0+θ_1x^{(i)}-y^{ {(i)}})^{2} θjJ(θ0,θ1)=θj2m1i=1

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值