1. 基于价差的配对交易模型
核心原理
- 价差定义:直接使用两种资产价格的线性组合(如绝对价差或相对价差)作为交易标的。
- 均衡关系:假设价差序列服从平稳分布(通过协整检验或ADF检验),偏离均值时存在均值回复性。
- 交易信号:设定阈值(如均值±2倍标准差),价差突破阈值时触发交易,回归均值时平仓。
特点
- 静态对冲比例:对冲系数(如β=1)固定,适用于长期均衡关系稳定的资产对。
- 依赖协整性:需通过协整检验验证价差平稳性,对资产选择敏感。
- 优点:逻辑简单,计算成本低,适合低频交易。
- 缺点:无法适应动态变化的协整关系,可能因市场波动导致信号失效。
2. 基于线性回归的配对交易模型
核心原理
- 对冲系数确定:通过线性回归 PB=βPA+α 计算动态对冲比例β,残差 ε=PB−βPA 作为价差。
- 动态调整:可采用滚动窗口回归或协整修正模型(如误差修正模型),定期更新β以适应市场变化。
- 交易信号:基于残差的均值和标准差设定阈值,触发交易。
特点
- 动态对冲:相比价差模型更灵活,能捕捉资产间关系的渐变。
- 适用性广:可处理非平稳资产对,但需确保残差序列平稳。
- 优点:通过滚动回归减少滞后性,提升策略稳定性。
- 缺点:回归窗口选择影响结果,窗口过小易受噪声干扰,过大则滞后。
3. 基于卡尔曼滤波的配对交易模型
核心原理
- 状态空间模型:将对冲系数β和残差视为动态状态变量,通过卡尔曼滤波递推更新:
- 预测步骤:基于系统模型预测下一时刻的β和残差。
- 更新步骤:利用新观测值修正预测值,最小化估计误差。
- 交易信号:标准化残差(如Z-score)偏离阈值时交易,动态调整头寸。
特点
- 高度动态性:实时调整β,适应快速变化的资产关系(如高频数据或波动市场)。
- 噪声过滤:通过卡尔曼增益平衡预测与观测,减少异常值影响。
- 优点:在非平稳市场或短期协整失效时表现优于传统方法。
- 缺点:参数(过程噪声、观测噪声)需手动调优,计算复杂度高。
对比总结
维度 | 基于价差 | 基于线性回归 | 基于卡尔曼滤波 |
---|---|---|---|
对冲比例 | 静态(固定β) | 动态(滚动回归或协整修正) | 高度动态(实时递推更新) |
适用场景 | 长期协整关系稳定的资产对 | 中短期协整或线性关系资产对 | 高频、非平稳或快速变化市场 |
计算复杂度 | 低 | 中 | 高 |
信号稳定性 | 较高(依赖协整性) | 中等(受窗口选择影响) | 较低(需调优参数) |
典型应用 | 股票配对、ETF套利 | 商品期货、跨品种套利 | 高频交易、波动率交易 |
实证表现差异
- 价差模型:在A股等低频市场中表现稳定,但需严格筛选协整对。
- 线性回归模型:通过滚动窗口可捕捉短期关系变化,但窗口选择需谨慎。
- 卡尔曼滤波:在期货跨期套利中优势明显,但需处理参数噪声问题。
选择建议
- 保守型策略:优先选择基于价差的协整模型,确保长期稳定性。
- 灵活性需求:采用线性回归滚动窗口法,平衡动态性与计算成本。
- 高频/复杂市场:使用卡尔曼滤波,但需投入更多资源调优参数。
通过结合资产特性与市场环境,可针对性选择或融合不同模型以优化策略表现。