交叉验证:将数据集拆分成5个子集,把指定模型在每个数据子集上独立训练和测试,从而更好地评估模型性能

交叉验证是一种评估模型性能的技术,通过将数据集划分为多个子集(称为“折”),并在不同的子集上训练和测试模型,从而获得更可靠、更稳定的性能评估。以下是交叉验证的详细解释:

原理

  1. 数据划分:将数据集随机划分为(k)个互不重叠的子集(折),通常(k=5)或(k=10)。

  2. 模型训练和测试对于每个折,将其中(k-1)个折作为训练集,剩下的1个折作为测试集。重复这个过程(k)次,每次选择不同的折作为测试集。

  3. 性能评估:在每次迭代中,使用训练集训练模型,并在测试集上评估其性能。最终的性能指标(如准确率、召回率、F1分数等)是(k)次评估结果的平均值。

优点

  • 减少过拟合风险:通过在不同的数据子集上训练和测试模型,可以减少过拟合的风险。

  • 充分利用数据:与简单的训练集/测试集划分相比,交叉验证更充分地利用了数据,尤其是在数据量较小的情况下。

  • 提供稳定评估:通过多次评估模型性能,可以得到更稳定、更可靠的性能指标。

应用场景

  • 模型选择:用于比较和选择不同的模型或超参数组合。

  • 性能评估:用于评估模型在新数据上的泛化能力。

  • 特征选择:用于评估不同特征组合对模型性能的影响。

医疗领域的应用

在医疗领域,

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值