OneHotEncoder:将分类变量 转换为 数值型特征

机器学习模型通常需要数值型输入,因为大多数模型的数学基础(如矩阵运算、梯度下降等)依赖于数值计算。字符串或其他非数值型数据需要通过某种方式转换为数值型特征,以便模型能够处理。

常见预处理算法几种常见的字符串转换为数值的方法的对比-CSDN博客

OneHotEncoder是一种常用的数据处理技术,用于将分类变量(categorical variables)转换为数值型特征(numerical features),以便机器学习模型能够处理这些数据。它通过将每个分类变量的类别(category)映射为一个二进制向量(binary vector)来实现这一点。

原理

  1. 分类变量:分类变量是离散的、非数值型的变量,例如颜色(红、绿、蓝)、性别(男、女)等。

  2. 独热编码OneHotEncoder将每个类别映射为一个二进制向量,其中只有一个元素为1,其余为0。例如:
    • 颜色类别“红”、“绿”、“蓝”会被编码为:
      • 红 → [1, 0, 0]

      • 绿 → [0, 1, 0]

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值