机器学习模型通常需要数值型输入,因为大多数模型的数学基础(如矩阵运算、梯度下降等)依赖于数值计算。字符串或其他非数值型数据需要通过某种方式转换为数值型特征,以便模型能够处理。
常见预处理算法:几种常见的字符串转换为数值的方法的对比-CSDN博客

OneHotEncoder是一种常用的数据处理技术,用于将分类变量(categorical variables)转换为数值型特征(numerical features),以便机器学习模型能够处理这些数据。它通过将每个分类变量的类别(category)映射为一个二进制向量(binary vector)来实现这一点。
原理
-
分类变量:分类变量是离散的、非数值型的变量,例如颜色(红、绿、蓝)、性别(男、女)等。
- 独热编码:
OneHotEncoder将每个类别映射为一个二进制向量,其中只有一个元素为1,其余为0。例如:- 颜色类别“红”、“绿”、“蓝”会被编码为:
-
红 → [1, 0, 0]
-
绿 → [0, 1, 0]
-
- 颜色类别“红”、“绿”、“蓝”会被编码为:

最低0.47元/天 解锁文章
4616

被折叠的 条评论
为什么被折叠?



