问题是,在1024!的数值结果中(即1*2*3*4*……*1024),有多少个零。
思路:
一、小学数学奥林匹克题目是这样的,
答案确实是253算法简单:10 = 2 *5,必须有5的因子才可能乘到10;
所以计算1到1024中分解出5因子个数即得到结果。
二、两个办法:
1. 暴力做法:用大数计算1024!,然后再看后面有多少个0。大数计算的代码可以参考:
大数的四则运算及求模
2. 巧慧做法:看1到1024这些数中,有多少个是0个位和5的数字,比如
10! = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10
每一个0都由10产生,而10又由2和5组成。因子2的数量远大于5,因此,我们只需考虑因子5的数量即可,这就是答案。
因为5和其前面的任何一个偶数相乘都会产生0,个位本身是0的情况就更不用说了。
所以10!最后有2个0.
由此可以推知15!最后有3个0...
你当然还可以考虑10和2的数量,但是选择5是最简单的
此程序涉及到因式分解,关于因式分解的算法现在还没弄明白,以后查询整理
#include <stdio.h>
int totalzero(int n)
{
int total = 0;
while (n > 5)
{
n = (n - (n % 5)) / 5;
total += n;
}
return total;
}
void main()
{
printf("%d\n", totalzero(1024));
}