Codevs P1288 埃及分数

7 篇文章 0 订阅
1 篇文章 0 订阅

埃及分数


题目描述 Description

在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数。 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的。 对于一个分数a/b,表示方法有很多种,但是哪种最好呢? 首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越 好。 如: 19/45=1/3 + 1/12 + 1/180 19/45=1/3 + 1/15 + 1/45 19/45=1/3 + 1/18 + 1/30, 19/45=1/4 + 1/6 + 1/180 19/45=1/5 + 1/6 + 1/18. 最好的是最后一种,因为1/18比1/180,1/45,1/30,1/180都大。 给出a,b(0

输入输出


输入描述 Input Description

a b

输出描述 Output Description

若干个数,自小到大排列,依次是单位分数的分母。


样例


样例输入 Sample Input

19 45


样例输出 Sample Output

5 6 18


数据范围及提示 Data Size & Hint


分析

直接把自己写的TXT文件贴过来了。。。╮(╯▽╰)╭
总共需枚举出a/b的分数,那么假定现在已经枚举了部分,并且枚举的分母有序,从小到大。还剩下x/y的分数值等待枚举


那么分母至少也为y/x向上取整和上一次确定的分母值中取一个较大多1

也就是说

设分母构成的数列{ai}

那么
因为向下取整后加1就为向上取整,所以1放在外面加既可以表达y/x的向上取整
max([x/y],ai)=< a[k]
而右边界,因为分母是有序的

当去掉1/a[k]
后 ,待枚举的分数大小变为(y/x)-(1/a[k])此时枚举的分母为a[k+1]

a[k+1]的下界同理为
{(y/x)-(1/a[k])}和{a[k]+1}取较大
也即为

a[k+1]>=max([y/x-1/a[k]],a[k])+1

而分母是顺序递增的
所以
a[k+1]>a[k]

又因为限定层数为D层,当前为第k层,还剩下D-K+1层未寻找

假定D-K+1全用1/a[k]构成y/x
那么 构成的分数值为
(D-K+1)*(1/a[k])=y/x

(D-K+1)*x/y=a[k]
因为分母是递增的,所以
后面的分母肯定比a[k]要大
所以用这一个一定会超才可以,也即
(D-K+1)*(1/a[k]) > = y/x

(D-K+1)*x/y > =a{k];综上所述

max([x/y],a[k-1])= < a[k] < =(D-K+1)*x/y)

同时为了获得最优解,要比上一次枚举的最大分母小 才可以


代码如下

program p1288;
var a,b:int64;
    flag:boolean;
    now,denominator:array[0..1000] of int64;
    depth,i:longint;
function gcd(a,b:int64):int64;
begin
 if a mod b =0 then exit(b);
 exit(gcd(b,a mod b));
end;

function max(a,b:int64):int64;
begin
 if a>b then exit(a);
 exit(b);
end;

function min(a,b:int64):int64;
begin
 if a<b then exit(a);
 exit(b);
end;
procedure dfs(step,a,b:int64);
var x,up,down:int64;
    i:int64;
    j:longint;
begin
  x:=gcd(a,b);
  a:=a div x;
  b:=b div x;
  if (a=1) and (step=depth)
   then
    begin
     if (b<denominator[depth]) and (b<>now[step-1])
      then
       begin
        flag:=true;
        for j:=1 to depth-1 do
         denominator[j]:=now[j];
        denominator[depth]:=b;
        exit;
       end
      else
       exit;
    end;
  down:=max(trunc(b/a),now[step-1])+1;
  up:=min(trunc(((depth-step+1)*b)/a),trunc(maxlongint/a));
  i:=down;
  while i<=up do
   begin
    now[step]:=i;
    if step<depth then
     begin
      dfs(step+1,a*i-b,b*i);
     end;
    inc(i);
   end;
end;

begin
 readln(a,b);
 for depth:=1 to 1000 do
  begin
   flag:=false;
   now[0]:=0;
   denominator[depth]:=maxlongint;
   dfs(1,a,b);
   if flag then break;
  end;
 for i:=1 to depth do
  write(denominator[i],' ');
end.

测试结果

测试点#c0.in 结果:AC 内存使用量: 256kB 时间使用量: 0ms
测试点#c1.in 结果:AC 内存使用量: 256kB 时间使用量: 1ms
测试点#c2.in 结果:AC 内存使用量: 256kB 时间使用量: 1ms
测试点#c3.in 结果:AC 内存使用量: 128kB 时间使用量: 5ms
测试点#c4.in 结果:AC 内存使用量: 128kB 时间使用量: 1ms
测试点#c5.in 结果:AC 内存使用量: 128kB 时间使用量: 23ms
测试点#c6.in 结果:AC 内存使用量: 256kB 时间使用量: 154ms
测试点#c7.in 结果:AC 内存使用量: 128kB 时间使用量: 18ms
测试点#c8.in 结果:AC 内存使用量: 256kB 时间使用量: 12ms
测试点#c9.in 结果:AC 内存使用量: 256kB 时间使用量: 437ms


希望

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值