哈尔滨工业大学(HIT)作为中国顶尖的理工科高校之一,在人工智能(AI)领域的研究与教育中始终走在前沿。其课程与学术探讨《从图灵测试到DeepSeek》系统地梳理了人工智能的发展脉络,从早期的理论基础到当今最前沿的大模型技术,展现了AI技术的演进与突破。
1. 图灵测试:人工智能的哲学起点
课程首先从计算机科学之父艾伦·图灵(Alan Turing)提出的“图灵测试”切入。1950年,图灵在论文《计算机器与智能》中提出,如果一台机器能够通过自然语言对话让人无法分辨其是人类还是机器,那么它就可以被认为具有智能。这一思想实验奠定了AI的理论基础,并引发了关于“机器能否思考”的长期讨论。哈工大的课程不仅解析了图灵测试的科学意义,还探讨了其局限性,例如中文房间悖论(Searle, 1980)对纯粹符号处理AI的质疑,引导学生思考智能的本质。
2. 人工智能的演进:从符号主义到深度学习
课程随后回顾了AI发展的几个关键阶段:
-
20世纪50-70年代:符号主义与早期AI
早期AI研究基于逻辑推理和专家系统,如Newell & Simon的“逻辑理论家”和DENDRAL化学分析系统。然而,由于计算能力有限和知识表示瓶颈,AI在70年代遭遇“寒冬”。 -
80-90年代:统计学习与机器学习兴起
随着支持向量机(SVM)、决策树等算法的成熟,AI转向数据驱动方法。哈工大在这一时期贡献了诸多模式识别与自然语言处理(NLP)的研究,如中文信息处